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Note to the Reader 

his book is one of a series written by professional mathematicians 
in order to make some important mathematical ideas interesting T 

and understandable to a large audience of high school s t~den ts  and 
laymen. Most of the volumes in the New Mathematical Librarg cover 
topics not usually included in the high school curriculum; they vary 
in difficulty, and, even within a single book, some parts require a 
greater degree of concentration than others. Thus, while the reader 
needs little technical knowledge to understand most of these books, 
he will have to make an intellectual effort. 

If the reader has so far encountered mathematics only in classroom 
work, he should keep in mind that a book on mathematics cannot be 
read quickly. Nor must he expect to understand all parts of the book 
on first reading. He should feel free to skip complicated parts and 
return to them later; often an argument will be clarified by a subse- 
quent remark. On the other hand, sections containing thoroughly 
familiar material may be read very quickly. 

The best way to learn mathematics is to do mathematics, and each 
book includes problems, some of which may require considerable 
thought. The reader is urged to acquire the habit of reading with 
paper and pencil in hand; in this way mathematics will become in- 
creasingly meaningful to h i .  

The authors and editorial committee are interested in reactions to  
the books in this series and hope that readers will write to: Anneli 
Lax, Editor, New Mathematical Library, NEW YORK UNIVERSITY, 
THE COURANT I N S ~ ~ T E  OF MATHEMATICAL SCIENCES, 251 Mercer 
Street, New York, N. Y. 10012. 

The Editors 
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Preface 

He who despises Euclidean Geometry is like a man who, 
returning from foreign parts, disparages his home. 

H. G. Forder. 

The mathematics curriculum in the secondary school normally includes 
a single one-year course in plane geometry or, perhaps, a course in 
geometry and elementary analytic geometry called tenth-year mathe- 
matics. This course, presented early in the student's secondary school 
career, is usually his sole exposure to the subject. I n  contrast, the mathe- 
matically minded student has the opportunity of studying elementary 
algebra, intermediate algebra, and even advanced algebra. I t  is natural, 
therefore, to expect a bias in favor of algebra and against geometry. 
Moreover, mis@ided enthusiasts lead the student to believe that geome- 
try is "outside the main stream of mathematics" and that analysis or 
set theory should supersede it. 

Perhaps the inferior status of geometry in the school curriculum stems 
from a lack of familiarity on the part of educators with the nature of 
geometry and with advances that have taken place in its development. 
These advances include many beautiful results such as Brianchon's 
Theorem (Section 3.9), Feuerbach's Theorem (Section 5.6), the Petersen- 
Schoute Theorem (Section 4.8) and Morley's Theorem (Section 2.9). 
Historically, it must be remembered that Euclid wrote for mature 
persons preparing for the study of philosophy. Until our own century, 
one of the chief reasons for teaching geometry was that its axiomatic 
method was considered the best introduction to deductive reasoning. 
Naturally, the formal method was stressed for effective educational 
purposes. However, neither ancient nor modern geometers have hesitated 
to adopt less orthodox methods when it suited them. If trigonometry, 
analytic geometry, or vector methods will help, the geometer will use 
them. Moreover, he has invented modern techniques of his own that 

xi 
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are elegant and powerful. One such technique is the use of transforma- 
tions such as rotations, reflections, and dilatations, which provide short- 
cuts in proving certain theorems and also relate geometry to crystallo- 
graphy and art. This "dynamic" aspect of geometry is the subject of 
Chapter 4. Another "modern" technique is the method of inversive 
geometry, which deals with points and circles, treating a straight line 
as a circle that happens to pass through "the point a t  infinity". Some 
flavor of this will be found in Chapter 5. A third technique is the method 
of #rojectioe geometry, which disregards all considerations of distance and 
angle but stresses the analogy between points and lines (whole infinite 
lines, not mere segments). Here not only are any two pants joined 
by a line, but any two lines meet a t  a point; parallel lines are treated as 
lines whose common point happens to lie on "the line a t  infinity". 
There will be some hint of the content of this subject in Chapter 6. 

Geometry still possesses all those virtues that the educators ascribed 
to i t  a generation ago. There is still geometry in nature, waiting to be 
recognized and appreciated. Geometry (especially projective geometry) 
is still an excellent means of introducing the student to axiomatics. It 
still possesses the esthetic appeal i t  always had, and the beauty of its 
results has not diminished. Moreover, it is even more useful and neces- 
sary to the scientist and practical mathematician than it has ever been. 
Consider, for instance, the shapes of the orbits of artificial satellites, and 
the fourdimensional geometry of the space-time continuum. 

Through the centuries, geometry has been growing. New concepts 
and new methods of procedure have been developed: concepts that the 
student will find challenging and surprising. Using whatever means will 
best suit our purposes, let us revisit Euclid. Let us discover for ourselves 
a few of the newer results. Perhaps we may be able to recapture some of 
the wonder and awe that our first contact with geometry aroused. 

The authors are particularly grateful to Dr. Anneli Lax for her patient 
cooperation and many helpful suggestions. 

S. L. G. 
Toronto and New York, 1%7. 
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C H A P T E R  1 

Points and Lines Connected 
with a Triangle 

With a literature much vaster than those of algebra and 
arithmetic combined, and at least as extensive as that of 
analysis, geometry is a richer treasure house of more inter- 
esting and half-forgotten things, which a hurried generation 
has no leisure to enjoy, than any other division of mathe- 
matics. 

E. T. Be4 

The purpose of this chapter is to recall some of these half-forgotten 
things to which Dr. Bell referred, to derive some new theorems, developed 
since Euclid, and to apply our findings to interesting situations. We 
consider an arbitrary triangle and its most famous associated points 
and lines: the circumcenter, medians, centroid, angle-bisectors, incenter, 
excenters, altitudes, orthocenter, Euler line, and nine-point center. 

The angle-bisectors lead naturally to a digression on the Steiner- 
Lehmus theorem, which was believed for a hundred years to be difficult 
to prove, though we see now that it is really quite easy. 

Finally, from a triangle and a point P of general position, we derive 
a new triangle whose vertices are the feet of the perpendiculars from 
P to the sides of the given triangle. This idea leads to some amusing 
developments, some of which are postponed till the next chapter. 

1.1 The extended Law of Sines 

The Law of Sines is one trigonometric theorem that will be used fre- 
quently. Unfortunately, it usually appears in texts in a truncated form 
that is not so useful as an extended theorem could be. We take the liberty, 
therefore, of proving the Law of Sines in the form that we desire. 

1 



POINTS, LINES CONNECTED WITH A TRIANGLE 

We start with AABC (labeled in the customary manner) and circum- 
scribe about i t  a circle with center at  0 and with radius equal to R 
units, as shown in Figures 1.1A and 1.1B. We draw the diameter CJ,  
and the chord B J.t In both of the situations shown, L CB J is a right 
angle, since it is inscribed in a semicircle. Hence, in both figures, 

In Figure l.lA, L J = LA, because both are inscribed in the same 
arc of the circle. In Figure 1.1B, L J = 180' - L A, because opposite 
angles of an inscribed quadrilateral are supplementary. Remembering 
that sin 8 = sin (180' - 8) , it follows that sin J = sin A in both 
figures. Therefore, in either case, sin A = a/2R, that is, 

a - =  2R. 
sin A 

The same procedure, applied to the other angles of AABC, yields 

b c - =  2R, - -  - 2R. 
sinB sin C 

Combining results, we may state the extended Law of Sines thus: 

THEOREM 1.11. For a triangk ABC witk circumradius R, 

a b c - = = =  2R. 
sin A sin B sin C 

t For typographic reasons, the length of s line segment with endpoints X and Y 
will be denoted simply by XY in this book. 



AREA OF A TRIANGLE 

Figure 1.1B 

Let us agree to denote the area of any figure by the name of the figure 
enclosed in parentheses. Thus (ABC) denotes the area of AABC, 
(PQRS) denotes the area of a quadrilateral PQRS, and so on. 

EXERCISES 

1. Show that,t for any triangle ABC, even if B or C is an obtuse angle, 
a = b cos C + c cos B. Use the Law of Sines to deduce the "addition 
formula" 

sin (B + C) = sin B cos C + sin C cos B. 

2. In any triangle ABC, 

a (sin B - sin C) + b (sin C - sin A) + c (sin A - sin B) = 0. 

3. In any triangle ABC, (ABC) = abc/4R. 

4 .  Let p and q be the radii of two circles through A, touching BC a t  B and C, 
respectively. Then pq = P. 

t I n  subsequent exercises we shall save space by omitting the words "Show that" 
or "Prove that". Thus any exercise appearing in the form of a theorem is intended 
to be fioocd. 



POINTS, LINES CONNECTED WITH A TRIANGLE 

1.2 Ceva's theorem 

The line segment joining a vertex of a triangle to any given point on 
the opposite side is called a cevian. Thus, if X, Y, Z are points on 
the respective sides BC, CA, AB of triangle ABC, the segments 
AX, BY, CZ are cevians. This term comes from the name of the 
Italian mathematician Giovanni Ceva, who published in 1678 the follow- 
ing very useful theorem: 

THEOREM 1.21. If three cevians AX, BY, CZ, one through each 
vertex of a triangle ABC, are concurrent, then 

Figure 1.2A 

When we say that three lines (or segments) are concurrent, we mean 
that they all pass through one point, say P. To prove Ceva's theorem, 
we recall that the areas of triangles with equal altitudes are proportional 
to the bases of the triangles. Referring to Figure 1.2A, we have 

BX (ABX) (PBX) (ABX) - (PBX) (ABP) 
7 - - = -  
XC (AXC) (PXC) (AXC) - (PXC) (CAP) ' 

Similarly, 

CY (BCP) - = -  AZ (CAP) - = -  
YA (ABP) ' ZB (BCP) ' 



CEVA'S THEOREM 

Now, if we multiply these, we find 

BX CY AZ (ABP) (BCP) (CAP) --- = - -  
X C Y A Z B  (CAP) (ABP)  (BCP) 

= 1. 

The converse of this theorem holds also: 

THEOREM 1.22. I '  three c&ns AX, BY, CZ satkjy 

they are concuwent. 

To see this, suppose that the first two cevians meet at P, as before, 
and that the third cevian through this point P is CZ'. Then, by 
Theorem 1.21, 

BX CY AZ' --- - 
XC YA Z'B 

- 1. 

But we are assuming 

Hence 

AZ' AZ - = - 
Z'B ZB ' 

Z' coincides with Z, and we have proved that AX, BY, CZ are 
concurrent [9, p. 54). 

EXERCISES 

1. If X, Y, Z are the midpoints of the sides, the three cevians are con- 
current. 

2. Cevians perpendicular to the opposite sides are concurrent. 

3 Let ABC and A'B'C' be two non-congruent triangles whose sides are 
respectively parallel, as in Figure 1.2B. Then the three lines AA', BB', 
CC' (extended) are concurrent. (Such triangles are said to be homothefu. 
We shall consider them further in Section 4.7.) 



POINTS, LINES CONNECTED WITH A TRIANGLE 

Figure 1.2B 

4. Let AX be a cevian of length Q, dividing BC into segments BX = m 
and XC = n, as in Figure 1.2C. Then 

a ( b  + mn) = Pm + 8%. 

Hint: Add expressions for the cosines of the two supplementary angles 
a t  X in terms of the sides of AABX and A CAX, respectively. This 
result is called Stewart's thewem, after M. Stewart, who stated it in 1746. 
It was probably discovered by Archimedes about 300 B.C., but the first 
known proof is by R. Simson, 1751. 

Figure 1.2C 



STEWART'S THEOREM 

1.3 Points of interest 

There are many special points and lines connected with a triangle, 
and we shall have to restrict our attention to only a few of these. We 
have already referred to one such point, the center of the circle cir- 
cuinscribed about a triangle. We agree to call this point the circumcenter 
of the triangle, and we call the circle the circumcircle of the triangle. 
The circumcenter 0 is the intersection of the three perpendicular 
bisectors of the sides of the triangle (see Figure 1.3A). The radius of 
the circumcircle has already been denoted by the letter R. 

F i i  1.3A 

The cevians that join the vertices of a triangle to the midpoints of 
the opposite sides are called medians. In Figure 1.3B, the lines A A', BB' 
and CC' are medians, so that BA' = A'C, CB' = B'A, and 
AC' = C'B. Applying Theorem 1.21, we conclude that the medians 
are concurrent. Their common point, G, is called the centroid of the 
triangle. Were a triangle to be cut out of material of uniform density, 
it would balance if suspended at this point, common to the medians. 
In other words, the centroid is the "center of gravity" of the triangle. 

Looking again at  Figure 1.3B, we are struck with the fact that 
(GBA') = (GA'C), because the triangles have equal bases and the 
same altitude. That is why we have given the areas the same label, x. 
For the same reason, we have 

(GCB') = (GB'A) and (GAC') = (GC'B), 
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so we have labeled these areas y and z as shown. However, we also 
have (CAC') = (CC'B), that is, 2y + z = z + 2x, whence x = y. 
Similarly, (ABA') = (AA'C), whence y = z. Thus, we have 
shown that x = y = z, that is: 

THEOREM 1.31. A triangle is dissected by its medians into six smaller 
triangles of equal area. 

Figure 1.3B 

Continuing our examination of Figure 1.3B, we again note that 
(GAB) = 2(GBA1). Since these triangles have the same altitude, it 
follows that AG = 2GA'. Similarly, BG = 2GB1, and CG = 2GC' : 

THEOREM 1.32. The medians of a triangle divide one another in the 
ratio 2 :  1 ;  in  other words, the medians of a triangle "trisect" one another. 

A 

Figure 1.3C 



MEDIANS AND ALTITUDES 9 

The cevians AD, BE, C F  (Figure 1.3C), perpendicular to BC, 
CA, AB, respectively, are called the altitudes of AABC. As we saw 
in the Exercise 2 of Section 1.2, the converse of Ceva's theorem shows 
them to be concurrent. Their common point H is called the orlhocenter.t 

The points D, E ,  F themselves are naturally called the feet of the 
altitudes. Joining them in pairs we obtain ADEF, the orthic Iriangle 
of AABC. 

L 

Figure 1.3D 

Another important set of cevians are the three internal angle bisectors. 
Figure 1.3D shows one such bisector AL. Applying Theorem 1.11 to 
the two triangles ABL and A LC (whose angles a t  L, being supple- 
mentary, have equal sines), we obtain 

B L  c LC b - = -  = -  
sin #A sin L ' sin #A sin L ' 

whence 

Since we can derive similar results involving the internal bisectors of 
the angles B and C, we have now proved: 

THEOREM 1.33. Each angle bisector of a triangle divides the opposite 
side into segments proportional in length to the adjacent sides. 

t For the history of this term, see J. Satterly, Mathematical Gazette 45 (1962), 
p. 51. 
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Any point on A L  (Figure 1.3D) is equidistant from CA and AB. 
Similarly, any point on the internal bisector of the angle B is equi- 
distant from A B and BC. Hence the point I where these two bisectors 
meet is a t  equal distances r from all three sides: 

THEOREM 1.34. The internal bisectors of the three angles of a triangk 
are cmwrent. 

Figure 1.3E 

The circle with center I and radius r (Figure 1.3E) has all three 
sides for tangents and is thus the inscribed circle or incirck. We call I 
the incenter and r the inradiw. 

EXERCISES 

1. The circumcenter and orthocenter of an obtuse-angled triangle lie outside 
the triangle. 

2. Find the ratio of the area of a given triangle to that of a triangle whose 
sides have the same lengths as the medians of the original triangle. 

3. Any triangle having two equal medians is isosceles. 

4. Any triangle having two equal altitudes is isosceles. 

5. Use Theorems 1.22 and 1.33 to obtain another proof of Theorem 1.34. 

6. Find the length of the median A A' (Figure 1.3B) in terms of a, b, c. 
Hint: Use Stewart's theorem (Exercise 4 of Section 1.2). 



INTERNAL ANGLE BISECTORS 

7. The square of the length of the angle bisector AL (Figure 1.3D) is 

8. Find the length of the internal bisector of the right angle in a triangle 
with sides 3, 4, 5. 

9. The product of two sides of a triangle is equal to the product of the 
circumdiameter and the altitude on the thud side. 

1.4 The incircle and excircles 

Figure 1.4A shows the incircle touching the sides BC, CA, AB a t  
X, Y, Z. Since two tangents to a circle from any external point are 
equal, we see that AY = AZ, BZ = BX, CX = CY. We have 
accordingly labeled these segments z, y, z, so that 

Adding these equations and using Euler's labor-saving abbreviation s 
for the semiperimeter, we have 

2 a + 2 y + 2 2  = a + b + c  = 2s, 
so that 

x + y + z  = s 
and 

Figure 1.4A 



POINTS, LINES CONNECTED WITH A TRIANGLE 

Figure 1.4B 

Since the triangle IBC has base a and altitude r, its area is 
(IBC) = iar. Adding to this the analogous expressions for (ICA) 
and (IAB), weobtain # ( a +  b + c)r = sr. Hence 

THEOREM 1.42. (ABC) = sr. 

Figure 1.4B shows the triangle IdJ, whose sides are the external 
bisectors of the angles A, B, C. Any point on the bisector I,I. of L B 
is equidistant from AB and BC. Similarly, any point on Id* is 
equidistant from BC and CA. Hence the point I, where these two 
external bisectors meet is a t  equal distances r, from all three sides. 
Since I, is equidistant from sides AB and AC, it  must lie on the locus 
of points equidistant from these lines; that is, i t  must lie on the line 
AI, the internal bisector of L A : 

THEOREM 1.43. The external bisectors of any two angles of a triangle 
are concurrent with the internal bisector of the third angle. 
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The circle with center I. and radius re, having all three sides for 
tangents, is one of the three "escribed" circles or excircles. We call 
their centers I., I b ,  I, the excenters and their radii re, rb, re the 
enudii. Each excircle touches one side of the triangle internally and 
the other two sides (extended) externally. The incircle and the three 
excircles, each touching all three sides, are sometimes called the four 
trilangent circles of the triangle. 

Marking the points of contact as in Figure 1.4B, we observe that, since 
two tangents from a point to a circle are equal in length, 

BXb = BZb 
and 

BXb + BZb = BC + CXb + ZbA + AB 

Thus the tangents from B (or any other vertex) to the excircle beyond 
the opposite side are of length s. Indeed, 

Also, since CXb = BXb - BC = s - a, and so on, 

BX, = BZ, = CXb = CYb = s - a, 

CY. = CX. = AY, = AZ, = s - b ,  

AZb = AYb = BZ. = BX. = S - C .  

EXERCISES 

1. If three circles with centers A, B, C all touch one another exter- 
nally their radii are  s - a, s - b, s - c. 

2. If s, r, R have their usual meaning, abc = 4srR. 

3. The cevians AX, BY, CZ (Figure 1.4A) are concurrent. (Their com- 
mon point is called the Gergonnc point of AABC.) 

4. A ABC is the orthic triangle of AZ.Zd, (Figure 1.4B.) 

5. (ABC) = (s - a)r. = (s - b ) ~  = (s - c)r,. (Cf. Theorem 1.42.) 
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1.5 The Steiner-Lehmus theorem 

There are a number of geometric problems that seem to exert a peculiar 
fascination on anybody who happens to stumble on them. This appears 
to have been a characteristic of geometry even in ancient times. One 
has only to recall the three famous problems of antiquity-the duplica- 
tion of the cube, the trisection of the general angle, and the squaring of 
the circle. Attempts to solve these problems led to the development of 
many new branches of mathematics. Even now, there are would-be- 
mathematicians who send in "solutions" for these problems and dare 
the reader to prove them wrong. 

One theorem that always excites interest may be stated thus: 

THEOREM 1.51. Any triangle that has two equal angle bisechs (each 
measured from a vertex to the opposite side) is isosceles. 

In 1840, this theorem was sent in a letter from C. L. Lehmus to C. 
Sturm, with a request for a pure geometric proof. Sturm mentioned 
it to a number of mathematicians. One of the first to answer the chal- 
lenge was the great Swiss geometer Jacob Steiner, and it became known 
as the Steiner-Lehmus theorem. Papers on it appeared in various journals 
in 1842, 1844, 1848, almost every year from 1854 till 1864, and with a 
good deal of regularity during the next hundred years. 

One of the simplest proofs makes use of the following two lemmas. 

LEMMA 1.5 1 1.  I f  two chords o f a  circle subtend diferent acute angles 
at points on the circle, the smaller angle belongs to the shorter chord. 

PROOF. TWO equal chords subtend equal angles a t  the center and 
equal angles (half as big) a t  suitable points on the circumference. Of 
two unequal chords, the shorter, being farther from the center, subtends 
a smaller angle there and consequently a smaller acute angle a t  the 
circumference. 

LEMMA 1.512. If a triangle has two different angles, the smaller angle 
has the longer internal bisector. [5, p. 72.1 

PROOF. Let ABC be the triangle, with B < C as in Figure 1.5A;t 
let BM and CN bisect the angles B and C. We wish to prove that 
BM > CN. Take M' on BM so that LM'CN = #B. Since this 
is equal to LM'BN, the four points N, B, C, M' lie on a circle. 

t Here and in what follows, we often denote the angle at B simply by the letter B. 



B < 3(B + C) < 3(A + B + C), 

L CBN < LM'CB < 90'. 

By Lemma 1.511, CN < M'B. Hence BM > BM' > CN. 

PROOP OF THE THEOREM. I t  often happens that a theorem can be ex- 
pressed in an equivalent "contrapositive" form. For instance, instead 
of saying all men are mortal we can just as well say immortals we 
not men. Instead of proving Theorem 1.51 itself, it will sate for us 
to prove that if, in AABC, B # C, then BM # CN. But this 
is an immediate consequence of Lemma 1.512. 

Archibald Henderson wrote one of the many biographies of Bernard 
Shaw, and also a tract on The twenty-seven lines upon the cubic surface. 
In his paper, The Lehmus-Steiner-Terquem fwoblem in global survey 
(Scripta Mathematica, 21, 1955, pp. 223232, 309-312) he attributes a 
proof resembling ours to Lehmus himself (1850). The idea of replacing 
the theorem by a strengthened contrapositive appears in a paper by 
Victor ThCbault (Mathesis, 44, 1930, p. 97), who proved Lemma 1.512 
,,nctl.. ,c nh-..n n-A thnm rlnrl..mrl 'Pl-nn-m 1 C 1  oc n ((rn-~llo-..** 
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Henderson seems to have been slightly unhappy about Lehmus's 
proof, and about the earlier proof by Steiner, because they are not 
"direct". He would prefer to assume that BM = CN without consider- 
ing the situation when B # C. Most of the published proofs [e.g. 5, 
p. 731 are likewise indirect. Several allegedly direct proofs [e.g. 6, Answers 
to the Exercises, p. 21 have been proposed; but each of them is really 
an indirect proof in disguise. To  see that this is the case, recall that 
only the very most elementary theorems are in practice proved com- 
pletely. All the rest are proved with the aid of other theorems, already 
known: a whole chain of theorems going right back to the axioms. A 
proof cannot properly claim to be direct if any one of these auxiliary 
theorems has an indirect proof. Now, some of the simplest and most 
basic theorems have indirect proofs: consequently, if we insisted on 
complete directness, our store of theorems would be reduced to the 
merest trivialities. I s  this observation any cause for sorrow? In the 
words of the great English mathematician, G. H. Hardy [IS, p. 341: 

"Reduclio ad absurdurn, which Euclid loved so much, is one of a 
mathematician's finest weapons. I t  is a far finer gambit than any chess 
gambit: a chess player may offer the sacrifice of a pawn or even a piece, 
but a mathematician offers the game." 

EXERCISES 

1. Let BM and CN be external bisectors of the angles B = 12' and C = 132' 
of a special triangle ABC, each terminated at the opposite side. Without 
using trigonometric functions, compare the lengths of the angle bisectors. 
(0. Bottemat). 

2. Where does our proofeof Theorem 1.51 break down if we try to apply it 
to Bottema's triangle (in which nobody could deny that B < C ) ?  

3. Use Exercise 7 of Section 1.3 to obtain a "direct" proof of the Steiner- 
Lehmus theorem. 

1.6 The orthic triangle 

A good deal can be learned from inspection of Figure 1.6A, which 
shows an acute-angled triangle ABC, its circumcenter 0, its ortho- 
center H, and its orthic triangle DEF. Let us explain our reasons for 

t See Archibald Henderson, Scripfa Mathemaficcr 21 (1956), pp. 309-310. 
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marking several angles with the same symbol a, meaning 90' - A .  
First, since AOA'C is similar to the triangle JBC of Figure l.lA, 
L A'OC = A.  Thus the angles at the base of the isosceles triangle OBC 
are each 90' - A.  The right triangles ABE and ACF give us the same 
value for L EBA and L ACF. The equality of these last two angles 
could also have been seen from the fact that, since L BEC and L BFC 
are right angles, the quadrilateral BCEF is inscribable in a circle. 
Making analogous use of the quadrilaterals BDHF and CEHD, we 
find that 

LHDF = LHBF = LEBF = LECF = LECH = L E m .  

Thus HD bisects L EDF. 
Similarly, HE bisects L FED, and HF bisects L DFE. A first 

interesting result, therefore, is the following: The altitudes of a triangle 
bisect the angles of its orthic triangle. Expressing it  in another form 
that has a certain linguistic flavor to it: 

THEOREM 1.61. The orthocenter of an acute-angled triangle is the in- 
center of its orthu triangle. 

We have noticed in Figure 1.6A that LHDF = LDBO. Since 
HD is perpendicular to DB, FD must be perpendicular to OB. Simi- 
larly, DE is perpendicular to OC, and EF to OA. 

EXERCISES 

1 .  A A E F -  A D B F ,  A D E C -  A A B C  (Figure 1.6A). 

Figure 1.6A 
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2. Draw a new version of Figure 1.6A, with an obtuse angle at A. Which 
of the above conclusions have to be altered? 

3. The orthocenter of an obtuse-angled triangle is an excenter of its orthic 
triangle. 

4. LHAO = I B -  CI. 

1.7 The medial triangle and Euler line 

The triangle formed by joining the midpoints of the sides of a given 
triangle will be called the medial triangle. In Figure 1.7A, AA'B'C' 
is the medial triangle of AABC. We have inserted the two medians 
AA' and BB' meeting a t  G, two altitudes of AABC meeting a t  H, 
and two altitudes of AA'B'C' meeting at 0. I t  is remarkable how 
much we can find out merely from an inspection of this figure. 

Figure 1.7A 

First, AA'B'C' has its sides parallel to those of AABC, so the 
two triangles are similar. Next, C'B' = +BC, so the ratio between 
any two corresponding line segments (not merely corresponding sides) 
will be 1 :2. In fact, the line segments B'C', C'A', A'B' dissect AABC 
into four congruent triangles. 

Next, we see that AC'A'B' is a parallelogram, so that AA' bisects 
B'C'. Therefore, the medians of AA'B'C' lie along the medians of 
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AABC, which means that both triangles have the same centroid, G. 
Incidentally, the midpoint P of B'C' is also the midpoint of A A '  

Now, the altitudes of AA'B'C' that we have drawn are the per- 
pendicular bisectors of the sides AB and BC of AABC. We con- 
clude that 0, the orthocenter of AA'B'C', is a t  the same time the 
circumcenter of AA BC. 

Since H is the orthocenter of AABC while 0 is the orthocenter 
of the similar triangle A'B'C', AH = 20A'. From Theorem 1.32, 
we recall that AG = 2GA'. Finally, since AD and OA' are both 
perpendicular to the side BC, they are parallel. Hence 

L HAG = LOA'G, M A G -  AOA'G, 
and 

LAGH = L A'GO. 

This shows that the points 0, G, H are collinear, and HG = 2GO: 

THEOREM 1.71. The orthocenter, centroid and circumcenier of any 
triangle are collinear. The centroid divides the distance from the orthocenter 
to the circumcenter i n  the ratio 2: 1. 

The line on which these three points lie is called the E&r line of 
the triangle. 

Let us study Figure 1.7A more closely. We have marked the point 
N where the Euler line H 0  meets the line through P perpendicular 
to B'C'. The three lines AH, PN, A'O, all perpendicular to B'C', 
are parallel. Since A P = P A  ', they are evenly spaced : P N  is midway 
between AH and A'O. Hence N is the midpoint of the segment 80. 

We have conducted our discussions with respect to the side B'C' 
of AA'B'C'. If we apply the same reasoning to either of the other 
sides instead, the line segment H 0  remains fixed and is bisected by the 
perpendicular bisector of the new side. Since HO has just one midpoint, 
we can state that the perpendicular bisectors of all three sides of AA'B'C' 
will pass through the point N. In other words, N must be the circum- 
center of AA'B'C'. 

To summarize, the circumcenter of the medial triangle lies at the 
midpoint of segment H 0  of the Euler line of the parent triangle. Also, 
since AA'B'C' - AABC, the circumradius of the medial triangle 
equals half the circumradius of the parent triangle. 

The name Euler appears so frequently and in so many branches of 
mathematics that a few words about him are in order. Leonhard Euler 
was born in 1707 in Basel, Switzerland. In 1727, he was invited to the 
St. Petersburg Academy in Russia. In 1741, he left for Berlin, to take 
the chair in mathematics a t  the Prussian Academy. He returned to 
St. Petersburg in 1766, and remained there until his death in 1783. 
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Euler was a tireless worker, his activities enriching every field of 
mathematics. Wherever one looks, there is either an Euler's theorem, 
an Euler's formula, or an Euler's method. Euler wrote 473 memoirs 
that were published during his lifetime, 200 that were published soon 
after, and 61 others that had to wait. Moreover, he did all this under a 
severe handicap, for he lost the sight of one eye in 1735, and the sight 
of the other in 1766. His skill in manipulation was remarkable, and his 
intuitive grasp of mathematics enormous. We shall meet his name again 
and again in our work. 

EXERCISES 

1. By drawing a new version of Figure 1.7A, based on Figure 1.1B instead 
of l . lA,  verify that our proof of Theorem 1.71 remains valid when A ABC 
has an obtuse angle. 

4. If AABC has the special property that its Euler line is parallel to its 
side BC, then tan B tan C = 3. 

1.8 The nine-point circle 

To make things a bit easier, we remove some of the lines from Figure 
1.7A and then add a few others; the result is Figure 1.8A. Let us see 
what we can read from this diagram, in which K, L, M are the mid- 
points of the segments AH, BH, CH of the three altitudes. Since 
BC is a common side of the two triangles ABC and HBC, whose 
other sides are bisected, respectively, by C', B' and L, M, both the 
segments C'B' and LM are parallel to BC (and half as leng). Simi- 
larly, since AH is a common side of the two triangles BAH and CAH, 
both the segments C'L and B'M are parallel to AH (and half as 
long). Hence B'C'LM is a parallelogram. Since BC and AH are 
perpendicular, this parallelogram is a rectangle. Similarly, A'B'KL is 
a rectangle (and so also C'A'MK) . Hence A'K, B'L, C'M are three 
diameters of a circle, as in Figure 1.8B. 

Since L A'DK is a right angle, this circle (on A'K as diameter) 
passes through D. Similarly, it passes through E and F. To sum up: 

THEOREM 1.81. The feel of the three altitudes of any triangle, the mid- 
points of the three sides, and the midpoinis of the segments from the three 
vertues lo the orlhocenter, all lie on the same circle, of radius 3R. 
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Figure 1.8A 

Following J. V. Poncelet, we call this circle the nine-point circle of 
the triangle. Since the three points K, L, M are diametrically opposite 
to A', B', C', either of the two triangles KLM and A'B'C' can be 
derived from the other by a half-turn (that is, a rotation through 180") 
about the center of this circle. Clearly, this half-turn, which interchanges 
the two congruent triangles, must also interchange their orthocenters, 
H and 0. Hence the center of the nine-point circle is the midpoint of 
HO, which we have already denoted by N in preparation for its role 
as the nine-point center. In  other words: 

THEOREM 1.82. The center of the nine-point cirde lies otz the Euler 
line, midway between the orthocenter and the circumenter. 

Figure 1.8B 
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The history of these two theorems is somewhat confused. A problem 
by B. Bevan that appeared in an English journal in 1804 seems to indicate 
that they were known then. They are sometimes mistakenly attributed 
to Euler, who proved, as early as 1765, that the orthiG triangle and the 
medial triangle have the same circumcircle. In fact, continental writers 
often call the circle "the Euler circle". The first complete proof appears 
to be that of Poncelet, published in 1821. K. Feuerbach rediscovered 
Euler's partial result even later, and added a further property which 
is so remarkable that it has induced many authors to call the nine-point 
circle "the Feuerbach circle". Feuerbach's theorem (which we shall 
prove in Section 5.6) states that the nine-point circle touches all the four 
bitangent circles. 

EXERCISES 

1. The quadrilateral AKA'O (Figure 1 . 8 ~ )  is a parallelogram. 

2. In the nine-point circle (Figure 1.8B), the points K, L, M bisect the 
respective arcs EF, FD, DE. 

3. The circumcircle of AABC is the nine-point circle of AIddc. 

4. Let three congruent circles with one common point meet again in three 
points A,  B, C. Then the common radius of the three given circles is 
equal to the circumradius of AABC, and their common point is its 
orthocenter. 

5. The nine-point circle cuts the sides of the triangle at angles I B - C 1, 
Ic-A],  ! A - B I .  

1.9 Pedal triangles 

The orthic triangle and the medial triangle are two instances of a more 
general type of associated triangle. Let P be any point inside a given 
triangle ABC, and let perpendiculars PA1,  PBI, PC1 be dropped 
to the three sides BC, CA, AB, as in Figure 1.9A. The feet of these 
perpendiculars are the vertices of a triangle AIBICl which is called the 
pedal triangle of AABC for the "pedal point" P. The restriction of 
P to interior positions can be relaxed if we agree to insist that (for a 
reason that will be explained in Section 2.5) P shall not lie on the 
circumcircle of AABC. Clearly, the orthic triangle or the medial tri- 
angle arises when P is the orthocenter or the circumcenter, respectively. 
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Figure 1.9A 

Let us examine Figure 1.9A more closely. The right angles a t  B1 and 
Cl indicate that these points lie on the circle with d i e t e r  AP;  in 
other words, P lies on the circumcircle of AABlCl. Applying the 
Law of Sines to this triangle and also to AABC itself, we obtain 

BlCl a - =  A P, - =  
sin A sin A 2% 

whence 

Similarly, 
BP CP 

CIA1 = b - 
2R 

and AIBl = c - . 
2R 

We have thus proved: 

THEOREM 1.91. If the pedal point is dislanf x, y, s from the vertices 
of A4 BC, the pedal lrMngk ha.s sides 

The case when x = y = s = R is, of course, familiar. 

An interesting exercise involving pedal triangles of pedal triangles is 
at the same time a delightful example of imagination in geometry. I t  
seems to have first appeared when it was added, by the editor J. Neuberg, 
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to the sixth edition (1892) of John Casey's classic A Sequel to the First 
Six Books of the Elements of Euclid. In Figure 1.9B an interior point P 
has been used to determine AAlBlCl, the (first) pedal triangle of 
AABC. The same pedal point P has been used again to determine 
AAsB2Cs, the pedal triangle of AAIBICl, which we naturally call the 
"second pedal triangle" of AABC. A third operation yields AAdaCa, 
the pedal triangle of AAsBsCs. The understanding is that, for this 
"third pedal triangle" also, we use the same pedal point P. In this 
terminology, Neuberg's discovery can be expressed thus: 

THEOREM 1.92. The third pedal triangle is similar to the w i g i d  
triangle. A 

Figure 1.9B 

The proof is surprisingly simple. The diagram practically gives it 
away, as soon as we have joined P to A.  Since P lies on the circurn- 
circles of all the triangles ABlCl, A2BlC2, AdaC2, AsB~CI, and Ad2C8, 
we have 

= LBaC2P = LB8AsP 
and 

L PABl = L PCIB1 = L PCIAs = L PBsAs 
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In other words, the two parts into which A P  divides LA (marked in 
the diagram with a single arc and a double arc) have their equal counter- 
parts at  B1 and Cl, again at  Ct and B2, and finally both a t  Aa. 
Hence AABC and AA&Ca have equal angles a t  A and Aa. Simi- 
larly, they have equal angles at  B and Ba. Thus the theorem is proved. 

I t  is interesting to follow in the diagram the "parade of angles" from 
position A to position Aa: as neat as the maneuvers of a drill team. 

This property of continued pedals has been generalized by B. M. 
Stewart (Am. Math. Monthly, vol. 47, Aug.-Sept. 1940, pp. 462-466). 
He finds that the nth pedal n-gon of any n-gon is similar to the original 
n-gon. I t  is instructive to try this for the fourth pedal quadrilateral 
of a quadrilateral. 

At this point let us pause in our investigations. We have done part 
of what we set out to do: beginning with well-known data, we have 
developed a few simple but significant facts. There are many problems 
that lend themselves to solution by the methods described here. Some 
of them are well-known posers that the reader may have seen before. 
We bring this chapter to a close by presenting five of these hardy 
perennials. 

EXERCISES 

1. If a cevian AQ of an equilateral triangle ABC is extended to meet the 
circumcircle a t  P, then 

1 1 1 -+- = - 
PB PC PQ' 

2. If an isosceles triangle PAB, with equal angles 15' a t  the ends of its 
base AB, is drawn inside a square ABCD, as in Figure 1.9C, then the 
points P, C, D are the vertices of an equilateral triangle. 

Figure 1.K 

3. If lines PB and PD, outside a parallelogram ABCD, make equal 
angles with the sides BC and DC, respectively, as in Figure 1.9D, then 
L CPB = L DPA. (Of course, this is a plane figure, not three di- 
mensional I) 



POINTS, LINES CONNECTED WITH A TRIANGLE 

Figure 1.9D 

4. Let ABC be an isosceles triangle with equal angles 80' at B and C. 
Cevians BD and CE divide L B and L C  into 

60°+ 20' and 30' -k SO0, 

as ia Figure 1.9E. Find L EDB. 

5. If two lines through one vertex of an equilateral triangle divide the 
semicircle drawn outward on the opposite side into three equal arcs, 
these same lines divide the side itself into three equal line segments. 
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Some Properties of Circles 

Although the Greeks worked fruitfully, not only in geometry 
but also in the most varied fields of mathematics, neverthe- 
less we today have gone beyond them everywhere and cer- 
tainly also in geometry. 

F. Klkn 

The circle has been held in highest esteem through the ages. I ts  perfect 
form has affected philosophers and astronomers alike. Until Kepler 
derived his laws, the thought that planets might move in anything but 
circular paths was unthinkable. Nowadays, the words "square", "line", 
and the like sometimes have derogatory connotations, but the circle- 
never. Cleared of superstitious nonsense and pseudo-science, i t  still 
stands out, as estimable as ever. 

Limitations of space make it impossible for us to present more than 
a few of the most interesting properties developed since Euclid of the 
circle and its relation to triangles and other polygons. 

2.1 The power of a point with respect to a circle 

We begin our investigations by recalling two of Euclid's theorems: 
111.35, about the product of the parts into which two chords of 
a circle divide each other (that is, in the notation of Figure 2.1A, 
PA X PA' = PB X PB' ), and 111.36, comparing a secant and 
a tangent drawn from the same point P outside the circle (in Figure 
2.1B, PA X PA' = P P  ). If we agree to regard a tangent as the 
limiting form of a secant, we can combine these results as follows: 

27 
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THEOREM 2.11. If two lines through a point P meet a circle at points 
A, A' (possibly coincident) and B, B' (possibly coincident), respec- 
tively, then PA X PA' = PB X PB' . 

Figure 2.1A 

For a proof we merely have to observe that the similar triangles 
PA B' and PB A' (with a common angle a t  P )  yield 

PA PB - = -  
PB' PA" 

I n  Figure 2.1B, we can equally well use the similar triangles PAT and 
PTA' to obtain PA PT - = -  

PT PA" 
and then say PA X PA' = P P  = PB X PB' 

Figure 2.1B 

Let R denote the radius of the circle, and d the distance from P to 
the center. By taking BB' to be the diameter through P (with B 
farther from P than B'), we see that, if P is inside the circle (as in 
Figure 2.1A), 

A P X  PA' = B P X  PB' = ( R + d ) ( R -  d) = R2- 8, 
and if P is outside (as in Figure 2.1B), 
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P A  X PA' = PB x PB' = ( d +  R ) ( d -  R )  = 6 -  R. 

The equation 
A P X  PA' = RZ-dz 

provides a quick proof of a formula due to Euler: 

THEOREM 2.12. Let 0 and I be the circumcenter and incenter, re- 
spectively, of a lrMngk with circumradius R and inradius r; k t  d be the 
distance OI. Then 
(2.12) dL s RZ - 2rR. 

Figure 2.1C 

Figure 2.1C shows the internal bisector of L A  extended to meet the 
circumcircle a t  L,  the midpoint of the arc BC not containing A. LM 
is the diameter perpendicular to BC. Writing, for convenience, a  = + A  
and @ = $B, we notice that 

L B M L  = L B A L  = a, and LLBC = L L A C  = a. 

Since the exterior angle of AABI a t  I is 

L B I L  = a + @  = L LBI, 

ALBI is isosceles: LI = LB. Thus 

R-dL = L I X I A  = L B X I A  
sin a  LB/LM I y  = L M -  = LM - 
sin a  

I Y  
I Y / I A  

= L M X I Y  = 2121, 

that is, dL = RZ - 2rR, as we wished to prove. 
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For any circle of radius R and any point P distant d from the 
center, we call 

6-RZ 

the paver of P with respect to the circle. I t  is clearly positive when 
P is outside, zero when P lies on the circumference, and negative when 
P is inside. For the first of these cases we have already obtained the 
alternative expression 

PA X PAt, 

where A and A' are any two points on the circle, collinear with P 
(as in Theorem 2.11). This expression for the power of a point P remains 
valid for all positions of P if we agree to adopt Newton's idea of directed 
line segments: a kind of onedimensional vector algebra in which 

A P  = -PA. 

The product (or quotient) of two directed segments on one line is re- 
garded as being positive or negative according as the directions agree 
or disagree. With this convention, the equation 

8 - R Z  = P A X P A '  

holds universally. If P is inside the circle, 

6 -  R = -(RZ- 6 )  = - A P X  PA' = PA X PA'; 

and if P is on the circumference, either A or A' coincides with P, 
so that one of the segments has length zero. I n  fact, after observing 
that the product PA X PA' has the same value for every secant 
(or chord) through P, we could have used this value as a definition 
for the power of P with respect to the circle. 

The word paver was first used in this sense by Jacob Steiner, whose 
name has already appeared in Chapter 1. 

EXERCISES 

1. What is the (algebraically) smallest possible value that the power of a 
point can have with respect to a circle of given radius R? Which point 
has this critical power? 

2. What is the locus of points of constant power (greater than - Z?) with 
respect to a given circle? 

3. If the power of a point has the positive value P, interpret the length 1 
geometrically. 

4. If PT and PU are tangents from P to two concentric circles, with T 
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on the smaller, and if the segment P T  meets the larger circle at  Q, then 
PT' - PU = QF. 

5. The circumradius of a triangle is at  least twice the inradius. 

6. Express (in terms of r and R) the power of the incenter with respect 
to the circumcircle. 

7. The notation of directed segments enables us to express Stewart's theorem 
(Exercise 4 of Section 1.2) in the following symmetrical form [s, p. 152): 
If P, A, B, C are four Poi& of which the last three are collinear, thm 
P A Z X B C + P P X C A + P C X A B + B C X C A X A B  = 0. 

8. A line through the centroid G of AABC intersects the sides of the triangle 
at points X, Y, Z. Using the concept of directed line segments, prove 
that 

9. How far away is the horizon as seen from the top of a mountain one 
mile high? (Assume the earth to be a sphere of diameter 7920 miles.) 

2.2 The radical axis of two circles 

The following anecdote was related by E. T. Bell [3, p. 481. Young 
Princess Elisabeth, exiled from Bohemia, had successfully attacked a 
problem in elementary geometry by using coordinates. As Bell states it, 
"The problem is a fine specimen of the sort that are not adapted to 
the crude brute force of elementary Cartesian geometry." Her teacher 
was Ren6 Descartes (after whom Cartesian coordinates were namedt). 
His reaction was that "he would not undertake to carry out her solu- 
tion . . . in a month." 

The lesson is clear: a solution that is possible in a certain manner may 
still not be the best or most economical one. At any rate, here is one 
theorem for which an analytic proof, without being any more difficult 
than the usual synthetic proof [6, p. 861, has some interesting re- 
percussions: 

THEOREM 2.21. The locus of all points whose powers with respect to 
two n m m e n l r i c  circles are equal is a line perpendicukrr lo the line of 
centers of the two circles. 

t There are some who claim that it was Pierre Fermat (1601-1665) who actually 
invented analytic geometry. Their contention is that he gave the essential idea to 
Descartes in a letter. 
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I n  terms of rectangular Cartesian coordinates, the square of the 
distance d between any two points (x, y) and (a, b) is 

Therefore the power of (x, y) with respect to the circle with center 
(a, b) and radius r is 

I n  particular, the circle itself, being the locus of points (x, y) of power 
zero, has the equation 

(2.22) (x - + (y - b)2 - r2 = 0. 

The same equation, in the form (x - + (y - b)2 = r2, expresses 
the circle as the locus of points whose distances from (a, b) have the 
constant value r. 

When this circle is expressed in the form 

(where c = a2 + bZ - r2 ), the power of an arbitrary point (x, y) 
is again expressed by the left side of the equation, namely 

Another circle having the same center (a, b) but a different radius 
has an equation of the same form with a different c, and any circle 
having a different center has an equation of the form 

(2.24) x2 + y2 - 2a'x - 2b'y + c' = 0, 

where either a' # a or b' # b or both. We are thus free to use 
the equations (2.23) and (2.24) for the two non-concentric circles 
mentioned in Theorem 2.21. The locus of all points (x, y) whose 
powers with respect to these two circles are equal is 

Since X2 + 3 cancels, this locus is the line 

(a' - a)x  +. (b' - b)y = #(c' - c). 

By choosing our frame of reference so that the x-axis joins the two 
centers, we may express the two circles in the simpler form 

where a' # a. Then the locus becomes 

C' - C 

This line, being parallel to the y-axis, is perpendicular to the x-axis, 
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which is the join of centers. Since the line can be defined geometrically 
in terms of the circles (as containing all points of equal power), we could 
have taken it to be the y-axis itself, as in Figure 2.2A. Thus any two 
non-concentric circles can be expressed in the still simpler form 

Now the locus is x = 0. Conversely, every point (0, y) on the line 
x = 0 has the same power + + c with respect to both circles. 

Y 

Figure 2.2A 

This remark completes the proof. Of course, we could have shortened 
it by expressing the two circles immediately in the form (2.25) ; but then 
we would have missed the beautiful lemma that, for any circle expressed 
in the standard form (2.23), the power of the general point (x, y) is 
equal to the expression on the &left side of the equation. 

Figure 2.2B Figure 2.2C 
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The locus of points of equal power with respect to two non-concentric 
circles is called their radical axis. I n  the special case when the two circles 
intersect a t  two points A and A' (Figure 2.2B), each of these points 
has zero power for both circles, and therefore the radical axis is simply 
the line AA'. Similarly, when the two circles touch each other (Figure 
2.2C), their radical axis is their common tangent a t  their point of contact. 

EXERCISES 

1. What is the locus of all points from which the tangents to two given 
circles have equal lengths? 

2. When the distance between the centers of two circles is greater than 
the sum of the radii, the circles have four common tangents. The mid- 
points of these four line segments are collinear. 

3. Let PAB, AQB, ABR, P'BA, BQ'A, BAR' be six similar triangles 
all on the same side of their common side AB. (Three of them are 
shown in Figure 2.2D; the rest can be derived by reflectiont in the per- 
pendicular bisector of the segment AB.) Those vertices of the triangles 
that do not lie on AB (namely, P, Q, R, P', Q', R' ) all lie on one 
circle. Hint: Compare the powers of A and B with respect to the 
circle PQR. 

Figure 2.2D 

4. Given a and b, for what values of c does the equation 2.23 represent 
a circle? 

5. Describe a construction for the radical axis of two given non-concentric 
circles: a construction that remains valid when one circle encloses the other. 

t The operation of reflection is useful in solving many geometric problems. See, 
for instance, Yaglom [29]. 
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2.3 Coaxal circles 

The two circles (2.26) (which may be any two non-concentric circles) 
are members of an infinite family, represented by the equation 

where c is fixed while a varies over the whole range of real values 
(except, if c is positive, the values between f ). This family is 
called a pencil of coaxal circles, because every two of its members have 
the same line of centers and the same radical axis. If c is negative, 
every member of the family meets the y-axis at the same two points 
(0, f fi), and the pencil consists simply of all the circles through 
these two points. Similarly, if c = 0, the pencil consists of all the circles 
that touch the y-axis at  the origin. The case when c is positive is illus- 
trated in Figure 2.3A. 

Figure 2.3A 

If three non-coaxal circles are such that no two are concentric, we 
can take them in pairs and thus find three radical axes. Any point that 
has the same power for all three circles must lie on all three of these 
lines. Conversely, any point of intersection of two of the three radical 
axes, having the same power for all three circles, must lie on the third 
line as well. If two of the axes are parallel, then all three must be parallel. 
In particular: 

TEEOREM 2.31. If the centers of three circles form a triangle, there is 
just onc point whose powers with respect to the three circles are all equal. 

This common point of the three radical axes is called the radical center 
of the three circles. 

EXERCISES 

1. Two circles are in contact internally at  a point T. Let the chord AB of 
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the larger circle be tangent to the smaller circle a t  a point P.  Then the 
line T P  bisects L ATB. 

2. If three non-intersecting circles have radical center 0, the points 
of contact of the six tangents from 0 to the circles all lie on one circle. 

2.4 More on the altitudes and orthocenter of a triangle 

The circumcircle of a triangle, already encountered in the previous 
chapters, deserves further examination. Figure 2.4A shows the circum- 
circle ABC with center 0, diameter AAo through A,  and radius 
OL = R perpendicular to BC. We see also the altitude AD = h. 
The equal angles a t  B and Ao make AABD - AAAoC, so that 

and 

Subtractidg from L BA C the two equal angles 

LAoAC = L B A D  = 9 0 ' - B ,  

we are left with 

LDAAo = A -  2(90'- B )  = A +  2 B -  ( A +  B + C )  

= B - C .  
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This expression for L DA A0 = L DAO has been made with reference 
to the figure in which B > C. If instead we had taken B < C, the 
equal angles AoAC and BAD would have overlapped, with the result 
that L DAO = C - B. We can include both cases by writing 
(2.42) LDAO = I B - C I .  

Figure 2.4B 

Figure 2.4B shows the three altitudes AD, BE, C F  extended to 
meet the circumcircle a t  D', E', F'. Of course, H is the orthocenter. 
Now L DAB = L FCB, both being complements of the angle B. This 
explains our use of the same symbol 8 for both. Also L BCD' = L BAD', 
so we have labeled L BCD' accordingly. The congruent right-angled 
triangles CDH and CDD' show us that 

(2.43) HD = DD'. 

Similarly, H E  = EE' and H F  = FF'. 
Since the circle with diameter AB passes through D and E, 

Theorem 2.11 tells us that HA X H D  = HB X HE. Similarly 
HB X H E  = HC X HF. Hence 

(2.44) HA X HD = HB X H E  = HC X HF. 

If X, Y, Z are any points on the respective sides BC, CA, AB, 
circles constructed on the cevians AX, BY, CZ as diameters will 
pass through the feet of the altitudes: D, E, F, respectively. (The 
second and third circles are shown in Figure 2.4C.) The three expres- 
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sions equated in (2.44) are the powers of H with respect to these three 
circles. Hence H is the radical center of the circles, and we have proved 
two interesting theorems that have appeared at various times as puzzlers: 

THEOREM 2.45. If circles are constructed on two cevians as diameters, 
their radical axis passes through the orthocenter H of the trkngk. 

THEOREM 2.46. For any three m - c w x a l  circles humng cevians for 
diameters, H is their radical center. 

A 

Figure 2.K 

Alternatively, the same results can be obtained by means of the follow- 
ing simple considerations. If AD is the altitude from A, the pencil 
of coaxal circlesathrough A and D may be described as the circles 
having cevians through A as diameters. Two of these cevians are the 
sides AB and AC. Thus the circles on BC, CA, AB as diameters 
have the altitudes for their radical axes in pairs, and H for their radical 
center. (In this manner, the concurrence of the altitudes is seen to be 
a special case of Theorem 2.31). I t  follows that H has the same power 
for all circles having cevians for diameters. 

Notice the word "non-coaxal" in the statement of Theorem 2.46. 
This implies that the three cevians are not all drawn from the same 
vertex of AABC. We shall seC in our next theorem that it implies 
slightly more! 

Several amusing problems can be derived from Theorem 2.46 (as 
applied to cevians AX, BY, CZ ) by introducing non-essentials. Al- 
though the three cevians need not be concurrent, it makes for greater 
confusion to let them be concurrent. Thus, we might ask: if circles are 
constructed on the medians (or altitudes, or angle bisectors) as diame- 
ters, prove that their radical center is the orthocenter of the triangle. 
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Figure 2.4D 

The most interesting case of non-concurrent cevians arises when 
X, Y, Z are collinear points on the l i e s  BC, CA, AB (extended 
if necessary), as in Figure 2.4D; for then we can equally well say that 
X, B, C are collinear points on the sides of AA YZ, or that Y, 
C, A are collinear points on the sides of ABZX, or that Z, A, B 
are collinear points on the sides of ACXY. Hence the circles on AX, 
BY, CZ as diameters are so situated that their radical axes pass through 
H and also (for the same reason) through the orthocenters of the other 
three triangles. Since these four orthocenters are obviously distinct, the 
radical axes must coincide, and we have proved 

THEOREM 2.47. If four lines meet one another at six points A, B, C, 
X, Y, Z, so that the sets of collinear points are XBC, Y CA , ZAB, X YZ, 
then the circles on AX, BY, CZ as diameters are coaxal, and the ortho- 
centers of the four triangles AYZ, BZX, CXY, ABC are collinear. 

Another property of a triangle and its altitudes is illustrated in Figure 
1.3C. If we inspect the diagram carefully, we reach the conclusion that, 
just as H is the orthocenter of AABC, A is the orthocenter of AHBC, 
and, for the same reason, B is the orthocenter of AHAC, and C 
is the orthocenter of AHAB. This configuration ABCH is known 
as an orthocentric quadrangle, and has a number of interesting properties. 
We merely examine one of them, namely: If ABCH is an orthocentric 
quadrangle, the circumcircles of the four triangles formed by taking any 
three of the vertices have equal radii. 

The simplest proof makes use of the equation (2.43) and Figure 2.4B. 
In this figure, AHBC and AD'BC are congruent, so they must have 
congruent circumcircles. Hence the circumcircle of AD'BC (or AABC) 
is congruent to the circumcircle of AHBC, and similarly for the other 
triangles. 
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EXERCISES 

1. The points where the extended altitudes meet the circumcircle form a 
triangle similar to the orthic triangle. 

2. The internal angle bisectors of AABC are extended to meet the cir- 
cumcircle at points L, M,  N, respectively. Find the angles of ALMN in 
terms of the angles A,  B and C. 

2.5 Simson lines 

If perpendiculars are dropped onto the sides of a triangle A BC from a 
point P, the feet of these perpendiculars usually form the vertices of a 
triangle A BICl  (the pedal triangle discussed in Section 1.9). Let us now 
examine the exceptional case where the point Plies on the circumcircle, as 
in Figure 2.5A. To be definite, we have taken P to lie on the arc C A  that 
does not contain B, between A and the point diametrically opposite to B. 
All other cases can be derived by re-naming A,  B, C. Because of the right 
angles at A ] .  B1 and C 1 ,  P lies also on the circumcircles of triangles 
A BCl,  A BIC and A BICl .  Therefore 

and, subtracting &PA1, we deduce 

LA PC = LC1 PA. 

But since points A1, C, P, B1 lie on a circle, 

and since points A, B1, P, C 1  lie on a circle, 

Thus 

so that the points A l ,  B1, C 1  are collinear; the pedal triangle is 
udegenerate.'*. 

Conversely, if a point P i s  so situated that the pedal triangle of AABC 
is degenerate, P must evidently lie in the region of the plane that is inside 
one angle of AABC and beyond the opposite side. By re-naming the 
vertices if necessary, we can assume that this-one angle" is B, and that C 1  
lies on the extension of the side BA beyond A,  as in Figure 2.5A. We can 
then reverse the steps in the above discussion of angles and conclude that 
P lies on the circumcircle. Hence 
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THEOREM 2.51. The feet of the perpendiculars from a point to the sides 
of a triangle are collinear i f  and only i f  the point lies on the circumcirck. 

The line containing the feet is known as the Simson line (or sometimes 
just the simson) of the w in t  with respect to the triangle. Robert Simson 
(1687-1768) made several contributions to both geometry and arithmetic. 
For instance, i t  was he who discovered that, if f, is the nth term of 
the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, * * *  , then 
f.-lf,,.+l - f 2  = (-1)" [6, pp. 165-1681. The "simson" was at- 
tributed to him because it  seemed to be typical of his geometrical ideas. 
However, historians have searched through his works for i t  in vain. 
Actually it  was discovered in 1797 by W i a m  Wallace. 

Figure 2.5A Figure 2.5B 

EXERCISES 

1. Does our proof of Theorem 2.51 require any modification when A A B C  
has an obtuse angle? 

2. What point on the circle has C A  as its Simson line? 

3. Are there any points that lie on their own Simson lines? What lines are 
these? 

4. The tangents at two points B and C on a circle meet a t  A .  Let A I B ~ C ~  
be the pedal triangle of the isosceles triangle ABC for an arbitrary 
point P on the circle, as in Figure 2.5B. Then 
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2.6 Ptolemy's theorem and its extension 

The concept of the Simson line can be used to derive a very useful 
theorem, as follows. Let us examine Figure 2.5A again. Although the 
"pedal triangle" AlBlCl is degenerate, the lengths of its "sides" are 
still given by Theorem 1.91 : 

Since AlBl + BICl = AlCl, we deduce cCP + aAP = bBP, 
that is 

A B X C P + B C X  A P  = A C X B P .  

Since ABCP is a cyclic quadrilateral, we have thus proved Ptolemy's 
theorem: 

THEOREM 2.61. If a quadrilateral is inscribed in a circle, the sum of 
the products of the two pairs of opposite sides is equal to the product of the 
diagonals. 

Ptolemy's theorem has a converse that can be strengthened by ob- 
sewing that, for any location of B1 other than on the segment AICl, 
the equation AIBl + BICl = A1Cl has to be replaced by the "triangle 
inequality" 

AlBi + BiCi > AiCi, 
which yields 

A B X C P + B C X A P  > A C X B P .  
Hence 

THEOREM 2.62. If ABC is a triangle and P is not on the arc CA of 
its circumcircle, then 

A B X C P + B C X A P  > A C X B P .  

EXERCISES 

1. Let P be any point in the plane of an equilateral triangle ABC. Then 
PC + PA = PB or PC + PA > PB according as P does or does 
not lie on the arc CA of the circumcircle. [For an interesting application 
of this result, see 23, pp. 11-12.] 

2. If a point P lies on the arc CD of the circumcircle of a square ABCD, 
then PA (PA + PC) = PB(PB + PD). 
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3. If a circle cuts two sides and a diagonal of a parallelogram ABCD a t  
points P ,  R, Q as shown in Figure 2.6A, then 

A P X  A B +  A R X  AD = A Q X  AC. 

Hint: Apply Theorem 2.61 to the quadrilateral PQRA and then replace 
the sides of A P Q R  by the corresponding sides of the similar triangle 
CBA. 

Figure 2.6A 

2.7 More on Simson lines 

The Simson line has many interesting properties, and it may be worth- 
while to investigate some of them. Let us begin by examining Figure 2.7A, 
which is the same as Figure 2.5A except that the perpendicular PA1 
has been extended to meet the circumcircle a t  U, and the line A U has 
been drawn. 

The cyclic quadrilaterals PA UC and PBlAlC tell us that 

L PUA = L PCA = L PCBl = LPAlBl. 

Therefore the line AU is parallel to the Simson line AlB1. 

Figure 2.7A Figure 2.7B 
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Let us now compare the Simson line of P with the Sirnson line of 
another point P' (also, of course, on the circumcircle). The angle 
between these two Simson lines is simply the angle UA U' between 
the lines AU and AU' which are parallel to them (Figure 2.7B). The 
two chords PU and P'U', both perpendicular to BC, are parallel to 
each other, and cut off equal arcs PP' and UU'. Thus 

or, if we distinguish between positive and negative angles, 
LUAU' = + L  UOU' = - 3 L  POP'. 

We have thus proved : 

THEOREM 2.71. The angle between the Simson lines of fwo points P 
and P' on the circumcirck is half the angular measure of the arc P'P. 

If we imagine P to run steadily round the circumcircle, the line AU 
will rotate steadily about A at  half the angular velocity in the opposite 
sense, so as to reverse its direction by the time P has described the 
whole circumference. Meanwhile, the Simson line will turn in a corre- 
sponding manner about a continuously changing center of rotation. In  
fact, the Simson line envelops a beautifully symmetrical curve called a 
deltoid or "Steiner's hypocycloid" [20]. The motion is demonstrated 
very clearly in the film Simson Line by T. J .  Fletcher. 

Figure 2.7C 
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To continue our investigation, let us now examine Figure 2.7C. 
which is a combination of Figures 2.4B and 2.7A with the extra lines 
HP, D'P (meeting BC a t  Q) and HQ (extended to meet P U  a t  V). 
Since both HD' and P V  are  perpendicular to BC, equation (2.43) 
shows that the triangles QHD' and QPV are  isosceles. In  other 
words, HV is the image of D'P by reflection in BC. Since 

LD'HV = LPVH = LD'PU = LD'AU, 

the line HV is parallel to AU, which we have already shown to be 
parallel to the Simson line of P. 

Finally, we observe that, in APHV, the Simson line AIBl is parallel 
to the side H V  and bisects the side P V  (at  A1 ). Hence i t  must also 
bisect the remaining side PH:  

THEOREM 2.72. The Simson line of a point (on the circumcircle) bi- 
sects the segment joining that point to the orthocenter. 

This has been merely an  introduction to the topic of Simson lines. 
They have many other properties which we must regretfully leave to 
other sources. 

EXERCISES 

1. The Simson lines of diametrically opposite points on the circumcircle are 
perpendicular to each other and meet on the nine-point circle. 

2. Let ABC be an equilateral triangle inscribed in a circle with center 0, 
and let P be any point on the circle. Then the Simson line of P bisects 
the radius OP. 

2.8 The Butterfly 

The Butterfly theorem has been around for quite a while. We state 
i t  as follows (see Figure 2.8A) : 

THEOREM 2.81. Through the midpoint M of a chord PQ of a circle, 
any other chords AB and CD are drawn; chords AD and BC meet PQ at 
points X and Y .  Then M is the midpoint of XY .  

For this theorem numerous proofs have been developed, varying in 
length and difficulty. Three have been received from Dr. Zoll of Newark 
State College. H e  mentioned that one of these was submitted in 1815 



46 PROPERTIES OF CIRCLES 

by W. G. Homer, discoverer of Homer's Method for approximating the 
roots of a polynomial equation. (According to E. T. Bell, Horner's 
Method was anticipated by a Chinese.) For another proof, see R. Johnson 
[17, p. 783. The shortest proof employs projective geometry [7, pp. 78, 
1441. The one presented here, though not very short, is simple and easy 
to remember. 

Figure 2.8A 

We begin by dropping perpendiculars xl and yl from X and Y to 
AB, x2 and y2 from X and Y to CD. Writing for convenience 
a = P M  = MQ, x = XM, y = MY, we observe that the pairs 
of similar triangles Mxl and Myl, Mx2 and My2, A s  and Cy2, Dxt 
and Byl yield 

whence 

Z XI X) - XI ~2 - AX X XD P X  X XQ - - - --  - -- - - - 
f 3 1 1 ~ 2  yzyi C Y X Y B  P Y X Y Q  

- - (a - x) (a + X) a2 - Z a2 = = - -  
( a + y ) ( a - y )  a * - f  a2 

- 1, 

and x = y, as we wished to prove. 

EXERCISES 

1. In Figure 2.8A the lines AC and BD (extended) intersect PQ (ex- 
tended) at  two points which, like X and Y, are equidistant from M. 

2. Let PT and PB be two tangents to a circle, AB the diameter through 
B, and TH the perpendicular from T to AB. Then AP bisects TH. 
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3. Let the incircle (with center I )  of AABC touch the side BC at  X, 
and let A' be the midpoint of this side. Then the line A'Z (extended) 
bisects AX. 

2.9 Morley's theorem 

One of the most surprising theorems in elementary geometry was dis- 
covered about 1904 by Frank Morley (the father of Christopher Morley, 
whose novel, Thunder on the Left, has a kink in its time sequence that 
appeals particularly to geometers). He mentioned it to friends in Cam- 
bridge, England, and published it twenty years later in Japan. Mean- 
while i t  was rediscovered and presented as a problem in the Educational 
Times. Two solutions were sent in, one of which, by M. T. Naraniengar,t 
is as neat as any of the dozens that have been devised since then. The 
theorem states: 

THEOREM 2.91. The points of intersection of the adjacent trisectors of 
the angles of any triangle are the vertices of an equilateral triangle. 

z 
Figure 2.9A 

Naraniengar's proof requires a preparatory theorem or lemma (illus- 
trated in Figure 2.9A) : 

LEMMA. Iffour joints Y', 2, Y ,  2' satisfy the conditions 

t Mathematical Questions and Their Solutions from the Educational Times (New 
Series), 15 (1909), p. 47. 
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Y'Z = ZY = YZ' 
and 

L YZY' = LZ'YZ = 180' - 2a > 60' 

then they lie on a circk. Moreover, a point A ,  on the side of the line Y'Z' 
away from Y ,  i s  so situated that L Y'AZ' = 301, then thisjfth point A 
also lies on the same circk. 

To prove the lemma, let the internal bisectors of the equal angles 
YZY' and Z'YZ meet at  0 .  Then OY'Z, OZY,  OYZ' are three con- 
gruent isosceles triangles having base angles 90' - a .  Their equal sides 
OY', OZ, O Y ,  OZ' are radii of a circle with center 0 ,  and their angles 
at  this common vertex are 2a. In  other words, each of the equal chords 
Y'Z, Z Y ,  YZ' subtends an angle 2a at  the center 0 and conse- 
quently subtends an angle a at  any point on the arc Y'Z' not contain- 
ing Y .  This arc may be described as the locus of points (on the side of 
the line Y'Z' away from Y ) from which the chord Y'Z' sub tends an 
angle 301. One such point is A ;  therefore A lies on the circle. 

Figure 2.9B 

Now we are ready to attack Theorem 2.91 itself. In Figure 2.9B, the 
trisectors of the angles B = 38 and C = 37 meet as shown at  the 
points U and X. In  ABCU, the angles at B and C are bisected by 
BX and C X ;  hence X is the incenter, and the angle at U is bisected 
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by UX. If we construct points Y and Z on the lines CU and BU so 
that XY and XZ make equal angles 30" with XU on opposite sides, 
then AUXY E AUXZ, XY = XZ, and since the angle a t  X is 
60" it follows that AXYZ is equilateral. 

Also AUZ Y is isosceles. Its angle at U is the same as that of AUBC, 
whose other angles are 28 and 2y; therefore the equal angles of AU YZ 
at Y and Z are each + 7. 

Writing a = A/3, we deduce from A + B + C = 180" that 

a + 8 + 7 = 60", whence B + 7 = 60" - a. 

Thus 

LYZU = 60"-a  and LXZU = 120"-a. 

Our next step is to mark off BY' = BX on BA , and CZ' = CX 
on CA . We now have 

ABZXEABZY'  and ACYXZACYZ',  

so that 
Y'Z = ZX = ZY = YX = YZ'. 

Before we can apply the lemma, we still have to evaluate L YZY' and 
L Z'YZ. However, this is a simple matter. Since the equal angles BZY' 
and BZX have equal supplements, 

LUZY' = LXZU = 120"- a 
and 

L YZY' = L YZU + L UZY' = (60" - a )  + (120" - a)  

Similarly, LZ'YZ = 180" - 2a; and of course a = 4 A  < 60". 
Applying the lemma, we deduce that the five points Y', Z, Y, Z', A 

all lie on a circle. Since the equal chords Y'Z, ZY, YZ' subtend equal 
angles a at A, thelines AZ and AY trisect the angle A of AABC. 
In other words, the points X, Y, Z, which were artificially constructed 
so a s  to form an equilateral triangle, are in fact the points described in 
Morley's theorem. The proof is now complete. 

EXERCISES 

1. Let the angle trisectors AZ and CX (extended) meet a t  V, BX and 
A Y  at W. Then the three lines UX, VY, WZ are concurrent. (That 
is, in the language of projective geometry, UVW and XYZ are per- 
spective triangles. In  general, UVW is not equilateral.) 
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2. For what kind of triangle ABC will the pentagon A Y'ZYZ' be regular? 

3. When AABC is equilateral, the four points Y', 2, Y, Z' occur among 
the vertices of a regular enneagon (9-gon) in which A is the vertex 
opposite to the side Z Y. 

4. For a triangle with angles 3a, 3/3, 3.1 and circumradius R, Morley's 
triangle has sides 8R sin a sin @ sin 7. 

5. If Z'Y = YZ = ZY' on the side Z'Y' of a rectangle BCZ'Y' whose 
center X forms an equilateral triangle with Y and Z, then BX and 
BZ trisect the right angle a t  B. 
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Collinearity and Concurrence 

But he opened out the hinges, 
Pushed and pulled the joints and hinges, 
Till it looked all squares and oblongs 
L i e  a complicated figure 
In the Second Book of Euclid. 

C. L. Dodgson 

After discussing some further properties of triangles and quadrangles 
(or quadrilaterals), we shall approach the domain of projective geometry 
(and even trespass a bit). A systematic development of that fascinating 
subject must be left for another book, but four of its most basic theorems 
are justifiably mentioned here because they can be proved by the methods 
of Euclid; in fact, three of the four are so old that no other methods were 
available at the time of their discovery. All these theorems deal either 
with collinearity (certain sets of points lying on a lime) or concurrence 
(certain sets of lines passing through a point). The spirit of projective 
geometry begins to emerge as soon as we notice that, for many purposes, 
parallel lines behave like concurrent lines. 

3.1 Quadrangles ; Varignon's theorem 

A polygon may be defined as consisting of a number of points (called 
vertices) and an equal number of line segments (called sides), namely 
a cyclically ordered set of points in a plane, with no three successive 
points collinear, together with the line segments joining consecutive pairs 
of the hints. In other words, a polygon is a closed broken line lying in a 

51 
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plane. A polygon having n vertices and n sides is called an n-gon 
(meaning literally "n-angle"). Thus we have a pentagon ( n = 5 ), a 
hexagon ( n = 6 ), and so on. I n  fact, the Greek name for the number 
n is used except when n = 3 or 4. I n  these two simple cases i t  is 
customary to use the Latin forms triangle and quadrangle rather than 
"trigon" and "tetragon" (although "trigon" survives in the word 
"trigonometry"). Obviously we should discourage the tendency to call 
a quadrangle a "quadrilateral". (In projective geometry, where the sides 
are whole lines instead of mere segments, we need both terms with 
distinct meanings.) 

Two sides of a quadrangle are said to be adjacent or opposite according 
as they do or do not have a vertex in common. Similarly, two vertices 
are adjacent or opposite according as they do or do not belong to one 
side. The lines joining pairs of opposite vertices are called diagonals. 
Thus a quadrangle ABCD has sides AB, BC, CD, DA, diagonals 
AC and BD. 

Figure 3.1A 

In  Figure 3.1A we see quadrangles of three obviously distinct types: 
a convex quadrangle whose diagonals are both inside, a re-entrant quad- 
rangle having one diagonal inside and one outside, and a crossed quad- 
rangle whose diagonals are both outside. 

We naturally define the area of a convex quadrangle to be the sum of 
the areas of the two triangles into which it is decomposed by a diagonal: 

(ABCD) = (ABC) + (CDA) = (BCD) + (DAB). 

I n  order to make this formula work for a re-entrant quadrangle, we 
regard the area of a triangle as being positive or negative according as 
its vertices are named in counterclockwise or clockwise order. Thus 

(ABC) = (BCA) = (CAB) = -(CBA) 

For instance, the re-entrant quadrangle in the middle of Figure 3.1A 
has area 

(ABCD) = (BCD) + (DAB) = (CDA) - (CBA) 

= (CDA) + (ABC). 

Finally, the formula forces us to regard the area of a crossed quadrangle 
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as the dijerence between the areas of the two small triangles of which 
it is apparently composed. 

When combined with the idea of directed segments (Section 2.1), 
the convention (ABC)  = - ( C B A )  enables us to extend our proof of 
Ceva's theorem and its converse (1.21 and 1.22) to cases where X or 
Y or Z divides the appropriate side of AABC in a negative ratio, i.e., 
externally. 

The following theorem is so simple that one is surprised to find its 
date of publication to be as late as 1731. I t  is due to Pierre Varignon 
(1654-1722). 

THEOREM 3.11. The figure formed when the midpoints of the sides of a 
quadrangle are joined in  order i s  a parallelogram, and its area is half l h t  
of the quadrangle. 

We recall that the line segment joining the midpoints of two sides of 
a triangle is parallel to the third side and half as long as that third side. 
Given a quadrangle ABCD, let the midpoints of its sides AB, BC, CD, 
DA be P ,  Q, R ,  S ,  as in Figure 3.1B. Considering the triangles ABD 
and CBD, we infer that P S  and QR are both parallel to the diagonal 
BD and equal to 3BD. Hence the quadrangle PQRS is a parallelo- 
gram;t it is often referred to as the Varignm parallelogram of quad- 
rangle A BCD. 

Figure 3.1B 

As for the area, we have 

(PQRS)  = (ABCD) - (PBQ) - ( R D S )  - (QCR) - ( S A P )  
= (ABCD) - $ ( A B C )  - $ ( C D A )  - f (BCD) - $(DAB) 
= (ABCD) - )(ABCD) - f ( A B C D )  

= $ ( A B C D ) .  
The reader may like to draw a re-entrant quadrangle ABCD and 

verify that this decomposition is valid also in that case. 
t It would still be a parallelogram if ABCD were a skew quadrangle (not all in 

one plane). 
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Figure 3.1C 

Since the diagonals of any parallelogram bisect each other, the mid- 
points of PR and QS coincide at the center of the Varignon parallelo- 
gram (i.e., at  that point 0 of Figure 3.1C). Now, just as AC and BD 
are the diagonals of ABCD, so AD and BC are the diagonals of 
ABDC. Since PR has only one midpoint, the Varignon parallelogram 
PYRX of the new quadrangle ABDC has the same center 0. Hence 

THEOREM 3.12. The segments joining the midpoints of pairs of o p  
posite sides of a quadrangle and the segment joining the midpoints of the 
diagonals are concurrent and bisect one another. 

(This is the k i t  of our theorems about concurrence.) 
The following result will be found useful: 

THEOREM 3.13. I f  one diagonal divides a quadrangle inlo two triangles 
of equal area, it bisects the other diagonal. Conversely, i f  one diagonal bC 
sects the other, it bisects the area of the quadrangle. 

Figure 3.1D 
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To see why this is so, suppose BD divides ABCD into two triangles 
DAB and BCD of equal area, as in Figure 3.1D. Since these tri- 
angles have the same "base" BD, they have equal altitudes AH and 
CJ. From the congruent triangles AHF and CJF, we deduce that 
AF = CF. Conversely, if A F  = CF, then these triangles are con- 
gruent, AH = CJ, and (DAB) = (BCD). 

We are now in a position to prove the final theorem of this section: 

THEOREM 3.14. If a quadrangle A BCD has its opposite sides AD and 
BC (extended) meeting at W, while X and Y are the midpoints of the 
diagonals AC and BD, then (WXY) = t(ABCD). 

Figure 3.1E 

We begin by inserting the midpoints P and R of AB and CD, as 
in Figure 3.1E, and drawing PX, PY, RX, RY, RW. The line RY, 
joining the midpoints of two sides of the triangle BCD, is parallel to BC 
and bisects the "other" diagonal DW of the quadrangle D Y WR. Hence 
by the "converse" part of Theorem 3.13, 

(RYW) = (YRD) = i(BCD). 

In a similar manner we find that 

(RWX) = )(CDA). 

Also, by Varignon's theorem applied to the quadrangle ABDC, 

(RXY) = $(PYRX) = i(ABDC) 

= )(CAB) + f (BDC) 
= i(ABC) - )(BCD). 

Adding the last three expressions, we obtain 

(WXY) = (RXY) + (RYW) + (RWX) 
= i(ABC) - i(BCD) + i(BCD) + i(CDA) 
= i(ABC) + i(CDA) = i(ABCD). 
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EXERCISES 

1. The perimeter of the Varignon parallelogram equals the sum of the 
diagonals of the original quadrangle. 

2. The sum of the squares of the sides of any quadrangle equals the sum of 
the squares of the diagonals plus four times the square of the segment 
joining the midpoints of the diagonals. 

Figure 3.1F 

3. For a parallelogram, the sum of the squares of the sides equals the sum 
of the squares of the diagonals. 

4. If an isosceles trapezoid has equal sides of length a, parallel sides of 
lengths b and c,  and diagonals of length d, then dL = a* + bc. 

3.2 Cyclic quadrangles ; Brahmagupta's formula 

Let a set of E line segments, joining V points in pairs, be regarded 
as a "frame" in which the segments are rigid bars, pivoted at their ends 
but restricted to the plane. Clearly, a triangle ( E  = V = 3) is rigid, 
whereas a quadrangle ( E  = V = 4) has one degree of freedom: one 
of its angles can be increased or decreased, with a consequent change 
of the others. A frame is said to be "just rigid" if it is rigid but ceases 
to be when any one of its bars is removed. Sir Horace Lamb [19, pp. 
93-94] gave a simple proof that a necessary (though not sufficient) 
condition for a frame to be just rigid is 

E = 2V - 3. 

For instance, E = 5 and V = 4. In this case we have a quadrangle 
with one diagonal; the removal of this diagonal provides the degree of 
freedom just mentioned. 

Any four lengths a, b, c, d, each less than the sum of the other three, 
can be used as the sides of a convex quadrangle. The degree of freedom 
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enables us to increase or decrease two opposite angles till they are s u p  
plementary, and then, as we recall, the four vertices all lie on a circle. 
Suppose the diagonals of such a cyclic quadrangle are 1 and n (as in the 
first diagram of Figure 3.2A). Dissecting this quadrangle abcd along its 
diagonal 1, and joining it  together again after reversing the triangle dd ,  
we obtain a new quadrangle bcad, inscribed in the same circle (as in the 
second diagram of Figure 3.2A). One diagonal is still 1. Dissecting this 
cyclic quadrangle bcad along its other diagonal m, and joining it  to- 
gether again after reversing the triangle dbm, we obtain a third quad- 
rangle cabd, inscribed in the same circle (as in the last diagram of 
Figure 3.2A). Since this third quadrangle could have been derived from 
the first by dissection along the diagonal n, its diagonals are m and n, 
and no further transformations of this kind are possible (except a com- 
plete reversal such as abcd to dcba ) . By Ptolemy's theorem, our 2.61, 

mn = bc + ad, nl = ca + bd, lm = ab + cd. 

Figure 3.2A 

Since these quadrangles are convex, we can regard the area of each as 
the sum of the positive areas of two triangles. Reversing a triangle in 
the manner described does not alter its positive area. Hence our three 
quadrangles all have the same area (though no two of them are con- 
gruent unless two of the lengths a,  b, c, d happen to be equal). We 
summarize these remarks in the following statement: 

THEOREM 3.21. Any four unequal lengths, each less than the sum of 
the other three, will serve as the sides of three dierent cyclic quadrangles 
all having the same area. 

COROLLARY. The area of a cyclic quadrangle is a symmetric function 
of its four sides. 

The precise nature of this symmetric function was discovered in the 
seventh century A.D. by the Hindu mathematician Brahmagupta: 

THEOREM 3.22. If a cyclic quadrangle has sides a, b, c, d and semi- 
perimeter s, its area K is given by 

K2 = (S - a) (s - b) (s - c) (S - d). 
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One of the simplest methods for obtaining Brahmagupta's formula 
makes use of trigonometry. Consider the cyclic quadrangle abcd, a s  in 
Figure 3.2B, E being the vertex belonging to the sides a and b,  F the 
vertex belonging to c and d ,  and n the diagonal joining the other two 
vertices. (We shall denote the interior angles at E and F simply by E 
and F. ) Since E + F = 180°, we have 

cos F = -cos E and sin F = sin E. 

By the Law of Cosines, 

a2 + b2 - 2ab cos E = n2 = c2 + dl - 2cd cos F, 

whence 

(3.221) 2(ab + cd) cos E = a2 + b2 - c2 - dl. 

Since 
K = 3ab sin E + 3cd sin F = 3(ab  + cd) sin E, 

we have also 

(3.222) 2 (ab + cd) sin E = 4 K .  

Squaring and adding the expressions (3.221) and (3.2221, we obtain 

4 (ab  + ~ d ) ~  = (a2+ b2 - c2 - dl)2 + 1 6 P ,  

whence 

16KZ = (2ab + 2cd)* - (a2 + b2 - c2 - 8 ) 2 .  

By repeated application of the identity A2 - BS = ( A  - B)  ( A  + B ) ,  
we find 

16RL = [Zab + 2cd - (a2 + b2 - c2 - d l ) ]  

X [2ab + 2cd + (a2 + b2 - c2 - 8 ) ]  

= [c2 + 2cd + dl - ai + 2ab - b2] 

x [a2 + 2ab + b2 - I? + 2cd - 81 
= [ ( c  + - ( a  - b ) 2 ] [ ( a  + b)' - ( c  - d l2]  

= [ ( c + d -  a +  b ) ( c + d + a - b ) l  

where 2s = a + b + c + d. This completes the proof. 

Setting d = 0 in Theorem 3.22, we derive Heron's formula for the 
area of a triangle in terms of its sides a, b, c and semiperimeter s: 

= s ( s  - a ) ( s  - b ) ( s  - c ) .  
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Although this is named after Heron of Alexandria (about 60 A.D.), 
van der Waerden [28, pp. 228,2771 supports Bell [2, p. 581 in attribut- 
ing it to Archimedes (third century B.C.) . 

Figure 3.2B 

Another diiovery of Brahmagupta deals with a special kind of cyclic 
quadrangle: 

TEEOREM 3.23. If a cyclic quadrangle has perpendicular diagonals 
crossing a4 P,  the line through P perpendicular to any sidc bisects the o p  
posirc sidc. 

Referring to Figure 3.2C, where the cyclic quadrangle ABCD has 
perpendicular diagonals AC and BD, and where the line PH, perpen- 
dicular to BC, meets DA at X,  we have 

LDPX = LBPH = LPCH = LACB = LADB = LXDP.  
Hence the triangle XPD is isosceles. Similarly, so is the triangle XA P.  
Therefore 

XA = X P  = XD. 

Figure 3.2C 
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EXERCISES 

1. If a quadrangle with sides a, b, c, d is inscribed in one circle and 
circumscribed about another circle, its area K is given by 

K" = abcd. 

2. Find, by Heron's formula, the area of a triangle whose sides are 

(i) 13, 14, 15; (ii) 3, 14, 15. 

3. For a triangle ABC, express the inradius r in terms of s, s - a, 
S -  b, s -G .  

4. I n  the notation of Section 1.4, 

r, 4- ra 4- r, - r = 4R and (I.Idc) = 2sR. 

lmn 5. In  the notation of Figure 3.2A, K = - 
4R ' 

6. What happens to the result of Exercise 5 when we set d = O? 

7. If a convex quadrangle with sides a, b, c, d is inscribed in a circle 
of r a d i ~ s  R, its area K is given by 

K" = (bc 4- ad) (ca + bd) (ab 4- cd) 
16p 

8. Let two opposite sides of a cyclic quadrangle be extended to meet a t  V, 
and the other two sides to meet a t  W. Then the internal bisectors of 
the angles a t  V and W are perpendicular. 

9. If any point P in the plane of a rectangle ABCD is joined to the 
four vertices, we have PAt - P B  + PC - P D  = 0. 

10. If a quadrangle is inscribed in a circle, the product of the distances of 
a point on the circle from two opposite sides is equal to the product of 
the distances of the same point from the other two sides, and also to the 
product of the distances of the same point from the diagonals. 

3.3 Napoleon triangles 

We shall now examine some figures built with triangles and quad- 
rangles. An easy theorem that has been surprisingly neglected is the 
following: 
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THEOREM 3.31. Let triangles be erected exterdly on the sides oj an 
arbitrary triangle so that the sum oj the "remote" angles oj these three tri- 
angles is 180'. Then the circumcircles oj the three triangles have a common 
point. 

Figure 3.3A 

(Here is another theorem about concurrence!) The proof is quite 
simple. We have, as in Figure 3.3A, triangles CBP, A CQ, B A R  on the 
sides of the given triangle ABC, so chosen that the angles a t  P, Q and 
R satisfy the relation P + Q + R = 180'. Now the circumcircles of 
the triangles CBP and ACQ meet at C, and therefore also at another 
point, say F. Joining F to A, B, C, we see that 

LBFC = 180' - P, LCFA = 18O0- Q 

and so 

LAFB = 360' - ( L B F C  + LCFA) 

Hence F lies on the circumcircle of M A R  as well as on the circum- 
circles of the other two triangles. 

Two special cases are of particular interest: 

THEOREM 3.32. I j  the vertices A,  B, C oj AABC lie, respectively, 
on sides QR, RP, PQ oj APQR, then the three circles CBP, ACQ, BAR 
have a c o m m  point. 
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TEEOREM 3.33. I j  similar triangles PCB, CQA, BAR arc erected 
exlerloauy on the sides oj AABC, then the circacmcircles o j  tkwc three 
triangles have a (;ommu point. (Note, from the order in which we named 
the vertices of the similar triangles, that the angles at P, Q, R are rrot 
corresponding angles of these triangles.) 

Theorem 3.32 has been named by Forder C13, p. 171 the Pivot theorem. 
It was discovered by A. Miquel in 1838. Changing the notation from 
PQRABC to ABCAlBlCl for the sake of agreement with Figure 1.9A, 
we can just as easily prove it in the following slightly extended form: 
I j  ABC is a triangle and Al,  B1, Cl are any three points on the linar 
BC, CA, AB, then the three circles ABICI, AIBCI, AlBlC have a 
common point P. In the special case when the circles have A P, BP, C P  
for diameters, AAlBlCl is the pedal triangle of AA BC for the point P. 
Keeping ABC and P fixed, we can rigidly rotate the three lines PAl, 
PB1, PC1 about the "pivot" P, through any angle, so as to obtain an 
"oblique pedal triangle" AIBICl. Clearly, the circles ABICl, AIBCl, 
AlBlC continue to pass through P. 

I t  is not necessary for A1, B1, Cl to form a triangle: they may be 
collinear, as in Figure 2.5A. In this case Al, B, C are three points on 
the lines BIG, CIA, AB1, and the same theorem tells us that the three 
circles A BC, AIBIC, AlBCl have a common point. Since the only com- 
mon points of the last two circles are A1 and P, we have now proved 

THEOREM 3.34. I j  jour lines meet one anoiher at six points A, B, C, 
A1, B1, Cl, so t h d  the sets 4 coUinear points are AlBC, ABIC, ABCI, 
AlBlCl, then the four circles ABICl, AIBCI, AlBlC, ABC have a com- 
mon point. 

In the special case when the first three circles have A P, BP, C P  for 
diameters, AlBl is the Simson line of P for AABC. Keeping ABC 
and P fixed, we can rigidly rotate the three lines PA1, PB1, PC1 
about P through any angle so as to obtain an "oblique S i s o n  line". 
This line contains new "feet" Al, B1, Cl such that the three lines 
PA1, PB1, PC1 make equal angles (in the same sense of rotation) with 
the three lines BC, CA, AB. 

Theorem 3.33 has an interesting corollary concerning the triangle oj 
centers 01020s (Figure 3.3A). Since the sides 0 2 0 8 ,  0801, OlOt of this 
triangle are perpendicular to the common chords (or radical axes) of the 
pairs of circles, its angle at Ol must be the supplement of L BFC, which 
means that 01 = P. Similarly Ot = Q and 0 8  = R. These are the 
three different angles of our three similar triangles. Hence 
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THEOREM 3.35. I j  similar triangks PCB, CQA, BAR are erected 
externally on the sides o j  any triangle ABC, their circumcenters j m  a 
iriangk similar to the three triangles. 

In particular (Figure 3.3B), 

THEOREM 3.36. I j  equilateral triangles are erected externally on the 
sides oj any triangle, their centers jorm an eqacilaleral triangk. 

P 
Figure 3.3B 

I t  is known that Napoleon Bonaparte was a bit of a mathematician 
with a great interest in geometry. In fact, there is a story that, before 
he made himself ruler of France, he engaged in a discussion with the 
great mathematicians Lagrange and Laplace until the latter told him, 
severely, "The last thing we want from you, general, is a lesson in 
geometry." Laplace became his chief military engineer. 

Theorem 3.36 has been attributed to Napoleon, though the possibility 
of his knowing enough geometry for this feat is as questionable as the 
possibility of his knowing enough English to compose the famous palin- 
drome 

ABLE WAS I ERE I SAW ELBA. 

At any rate, it is convenient to name the triangle O1O20a of centers 
(in the case when PCB, CQA, and BAR are equilateral) the outer 
Napoleon triangle of AABC. By analogy, if equilateral triangles are 
erected internally on the sides of AABC, as in Figure 3.3C, their centers 
are the vertices of the inner Napoleon triangle N1N2Na. Thus Theorem 
3.36 can be stated briefly as follows: 

The outer Napoleon triangle is equilateral. 
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Yaglom [29, pp. 38, 931 proved this by another method, quite dif- 
ferent from ours, but having the advantage that it yields also the ana- 
logous 

THEOREM 3.37. The inner Napoleon triangle is equilateral. 

A different approach which contributes also an interesting by-product 
applies the Law of Cosines to the triangle AOa02 of Figure 3.3B. Since 
A02 is the circumradius of an equilateral triangle of side C A  = b, its 
length is b / a .  Similarly, A08 = c / a .  Moreover, 

LOaA02 = A + 60'. 
Hence 

( 0 ~ 0 8 ) ~  = ib2 + ic2 - 3bc cos ( A  + 60'). 

Since the vertices NZ and Na of the inner Napoleon triangle can be 
derived from 0 2  and Oa by reflection in the lines CA and AB, re- 
spectively, and L NaAN2 = A - 60', we have also 

( N Y a ) 2  = ib2 + - 3 b ~  COS ( A  - 60'). 

By subtraction, 

2 
(0~0a)~ - ( N Z N ~ ) ~  = - bc [COS ( A  - 60') - cos ( A  + 60')] 

3 

4 2 
= - bc sin A sin 60' = - bc sin A 

3 a 
4 

= - (ABC) .  a 
In an analogous manner, we obtain 

and since 0 2 0 8  = 0 8 0 1  = 0 1 0 2 ,  we deduce 

N2Na = NaNl = hT1N2. 

Remembering that the area of an equilateral triangle is d3/4 times the 
square of its side, we may formulate the "interesting by-product" as 

THEOREM 3.38. The outer and inner Napoleon triangles of any triangle 
ABC dijer i n  area by (ABC). 

Actually (as we see in Figure 3.3C), the inner Napoleon triangle is 
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"retrograde" so that (NlNda)  is negative (or zero) and the precise 
formula is not 

(OIOZO~) - (hTINzNa) = (ABC) 
but 

(010zOa) - (NaNzNl) = (ABC) 
or 

( 01020a) + (NlNzNa) = (A BC) . 

Figure 3.3C 

EXERCISES 

1. If squares are erected on two sides of a triangle, their circumcircles inter- 
sect on the circle whose diameter is the third side, and the centers of 
these three circles are the vertices of an isosceles right-angled triangle. 

2. In the notation of Figure 3.3B, 
(i) The lines POI, QG, ROa all pass through 0, the circumcenter of 
AABC; 
(ii) The lines AOl, B a ,  COa are concurrent; 
(iii) The segments AP, BQ, CR all have the same length, all pass 
through the common point F of the three circumcircles, and meet one 
another a t  angles of 60'. (This point is named F for Fermat, who ob- 
tained it, when no angle of AABC exceeds 120°, as the point whose 
distances from A, B, and C have the smallest sum.) 

3. In the notation of Figure 3.3C, the lines ANl, BN2, CNa are concurrent. 

4. The outer and inner Napoleon triangles have the same center. 
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3.4 Menelaus's theorem 

Menelaus of Alexandria (about 100 A.D., not to be confused with 
Menelaus of Sparta) wrote a treatise called Sphaerica in which he used 
a certain property of a spherical triangle; he wrote as if the analogous 
property of a plane triangle had been well known. Maybe it was; but 
since no earlier record of it has survived, we shall simply call the asser- 
tion of this property Menelaus's theorem. In the notation of directed 
segments (Section 2.1) it may be stated as follows (see Figures 3.4A, B) : 

TEEOREM 3.41. I j  poinls X, Y, 2 on ihe sides BC, CA, AB 
(suitably exlended) of AA BC are collinear, tkm 

BX CY AZ --- - 
CX A Y  BZ 

- 1. 

Conversely, ij this equation holdsfor points X, Y, Z on the Utree sides, 
tkm tkwc three points are collineM. 

Figure 3.4A 

Given the collinearity of X, Y, Z, as in Figure 3.4A or B, let hl, h2, ha 
be the lengths of the perpendiculars from A ,  B, C to the line XY, re- 
garded as positive on one side of this line, negative on the other. From 
the three equations 

BX ht = -  CY ha - = -  AZ hl - = -  
CX hs' AY hl' BZ h2' 

we obtain the desired result by multiplication. (Notice that always either 
all three or just one of the sides of AABC must be extended to accom- 
modate the three distinct collinear points X, Y, Z. ) 

Figure 3.4B 
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Conversely, if X, Y, Z occur on the three sides in such a way that 

let the lines AB and XY meet a t  2'. Then 

BX CY AZ' --- - 
CX AY BZ' 

- 1. 

Hence 

AZ' AZ - = -  
BZ' BZ ' 

Z' coincides with Z, and we have proved that X, Y, Z are collinear. 

We observe that Menelaus's theorem provides a criterion for col- 
linearity, just as Ceva's theorem (our 1.21 and 1.22) provides a criterion 
for concurrence. To emphasize the contrast, we may express Menelaus's 
equation in the alternative form 

EXERCISES 

1. The external bisectors of the three angles of a scalene triangle meet their 
respective opposite sides at three collinear points. 

2. The internal bisectors of two angles of a scalene triangle, and the external 
bisector of the third angle, meet their respective opposite sides a t  three 
collinear points. 

3.5 Pappus's theorem 

We come now to one of the most important theorems of plane geome- 
try. It was first proved by Pappus of Alexandria about 300 A.D., but 
its role in the foundations of projective geometry was not recognized 
until nearly sixteen centuries later. Pappus has appropriately been called 
the last of the great geometers of antiquity. The particular theorem 
that bears his name may be stated in various ways, one of which is as 
follows: 

TEEOREM 3.51. Ij A, C, E are ihree points on one line, B, D, F on 
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another, and if ihe three lines AB, CD, E F  meet DE, FA, BC, re- 
speciively, ihen ihe ihree points of intersection L, M, N are collinear. 

Figure 3.5A 

The "projective" nature of this theorem is seen in the fact that it is a 
theorem of pure incidence, with no measurement of lengths or angles, 
and not even any reference to order: in each set of three collinear points 
it is immaterial which one lies between the other two. Figure 3.5A is 
one way of drawing the diagram, but Figure 3.5B is another, just as 
relevant. We can cyclically permute the letters A, B, C, D, E ,  F, 
provided we suitably re-name L, M, N. To avoid considering points at 
infinity, which would take us too far in the direction of projective geom- 
etry, let us assume that the three lines AB, CD, EF form a triangle 
UVW, as in Figure 3.5C. Applying Menelaus's theorem to the five triads 
of points 

LDE, AMF, BCN, ACE, BDF 

on the sides of this triangle UVW, we obtain 

VL WD UE --- - VA WM UF - -1, --- - VB WC UN 
- -1, --- - - -1, 

LW DU EV A W M U  FV BW CU NV 

Dividing the product of the first three expressions by the product of the 
last two, and indulging in a veritable orgy of cancellation, we obtain 

whence L, M, N are collinear, as desired. [17, p. 237.1 
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A 

D 

Figure 3.5B 
N 

Figure 3.5C 

EXERCISES 

1. If A, C, E are three points on one line, B, D, F on another, and if 
the two lines AB and CD are parallel to D E  and FA, respectively, 
then E F  is parallel to BC. 

2. If A, B, D, E, N, M are six points such that the lines AE, DM, NB 
are concurrent and AM, DB, N E  are concurrent, what can be said 
about the lines AB, DE, NM? 

3. Let C and F be any points on the respective sides A E  and BD of a 
parallelogram AEBD. Let M and N denote the points of intersection 
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of CD and FA and of EF and BC. Let the line MN meet DA at 
P and EB a t  Q. Then A P  = QB. 

4. How many points and lines are named in Figure 3.5A (or Figure 3.5B)? 
How many of the lines pass through each point? How many of the points 
lie on each line? 

3.6 Perspective triangles ; Desargues's theorem 

The geometrical theory of perspective was inaugurated by the architect 
Filippo Brunelleschi (1377-1446), who designed the octagonal dome of 
the cathedral in Florence, and also the Pitti Palace. A deeper study of the 
same theory was undertaken by another architect, Girard Desargues 
(1591-1661), whose "two-triangle" theorem was later found to be just 
as important as Pappus's. I t  can actually be deduced from Pappus's; 
but the details are complicated, and we can far more easily deduce it 
from Menelaus's. 

If two specimens of a figure, composed of points and lines, can be 
put into correspondence in such a way that pairs of corresponding points 
are joined by concurrent lines, we say that the two specimens are per- 
spective from a point. If the correspondence is such that pairs of corre- 
sponding lines meet at  collinear points, we say that the two specimens 
are perspective from a line. In the spirit of projective geometry, Desargues's 
two-triangle theorem states that if two triangles are perspective from a 
point, they are perspective from a line. To avoid complications arising 
from the possible occurrence of parallel lines, let us be content to re- 
phrase it as follows: 

THEOREM 3.61. If two triangles are perspectiw from a point, and if 
their pairs of corresponding sides meet, then the three points of infersection 
are collinear. 

E 

Figure 3.6A 
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F i e  3.6B 

Again we have a theorem of pure incidence. Figures 3.6A and B are 
two of the many ways in which the diagram can be drawn. Here APQR 
and APQ'R' are perspective from 0 and their pairs of corresponding 
sides meet a t  D, E, F. (Some instances of perspective triangles have 
already been examined in Exercise 2 of Section 3.3, where every two of 
the three triangles ABC, PQR, 01020, are perspective from a point.) 

For a proof, we apply Theorem 3.41 to the three triads of points 

DR'Q', EPR', FQ'P 

on the sides of the three triangles 

obtaining 
OQR, ORP, O W ,  

QD RR' OQ' - -  = R E  PP  OR' PF QQ OP? 1, ---- 
RD OR' '9 pEss  = QF OQ' PP  - 1. 

After multiplying these three expressions together and doing a modest 
amount of cancellation, we are left with 

whence D, E, F are collinear, as desired. [17, p. 231.1 
Desargues's theorem is easily seen to imply its converse: that if two 

triangles are perspective from a line, they are perspective from a point. 
Let us be content to put it  thus: 

THEOREM 3.62. If two triangles arc pe~spectioc from a line, and if two 
pairs of corresponding vertices arc joined by intersecting lines, the triangles 
arc perspective from the poinl of intersection of these lines. 
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I n  declaring APQR and AP'Q'R' to be perspective from a line, we 
mean that there are three collinear pointst 

as in Figure 3.6A. Defining 0 = PP'.  RR', we wish to prove that this 
point 0 is collinear with Q and Q'. Since AFPP' and ALIRR' are 
perspective from the point E, we can apply Theorem 3.61 to them, 
and conclude that the points of intersection of pairs of corresponding 
sides, namely 

are collinear, as desired. 
This is an instance of a purely "projective" proof. 

EXERCISES 

1. If two triangles are perspective from a point, and two pairs of correspond- 
ing sides are parallel, the two remaining sides are parallel. (In this case 
the two triangles are said to be homothetic, as in Exercise 3 of Section 1.2.) 

2. How many points and lines are named in Figure 3.6A (or B)? How 
many of the lines pass through each point? How many of the points lie 
on each line? 

3. Name two triangles that are perspective from (i) P, (ii) P', (iii) D. 

4. What can be said about the vertices and sides of the two pentagons 
DFP'OR and EPQQ'R' ? Does the figure contain any other pentagons 
that behave in a similar manner? 

5. Two non-parallel lines are drawn on a sheet of paper so that their theo- 
retical intersection is somewhere off the paper. Through a point P, 
selected on the part of the paper between the lines, construct the line 
that would, when sufficiently extended, pass through the intersection 
of the given lines. What would the same construction yield if we applied 
i t  to two parallel lines? 

t It will be clear from the context when a symbol such as AB denotes the whole 
line through points A and B and not merely the segment terminated by them. It is 
convenient to denote the common point of two nonparallel lines AB and DE by AB-DE. 
This is less alarming than the symbol (A $ B) n (D $ E) preferred by some authors. 
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3.7 Hexagons 

Two vertices of a hexagon are said to be adjacent, alternate, or opposik 
according as they are separated by one side, two sides, or three sides. 
Thus, in a hexagon ABCDEF, F and B are adjacent to A, E and C 
are alternate to A, and D is opposite to A. The join of two opposite 
vertices is called a diagonal. Thus ABCDEF has three diagonals: AD, 
BE, CF. Similarly the hexagon ABCDEF has three pairs of opposik 
sides: AB and DE, BC and EF, CD and FA. 

A given hexagon can be named ABCDEF in twelve ways: Any one of 
its six vertices can be named A, either of the two adjacent vertices can 
be named B, and the rest are then determined by the alphabetical order. 

Six given points, no three collinear, can be named A, B, C, D, E, F 
in 6!  = 720 ways. Each way determines a hexagon ABCDEF having 
the six given points for its vertices. Hence the number of distinct hexagons 
determined by the six points is 

Figure 3.7A shows three of the sixty hexagons determined by six points 
on a circle. Although we are accustomed to the first ("convex") kind, 
we must not forget or neglect the other fifty-nine possible hexagons that 
can be derived from the same six points. 

In Section 3.1 we insisted that a polygon should have no three successive 
vertices collinear. However, other collinearities are allowed. In particular, 
Theorem 3.51 (Pappus's theorem) may be rephrased as follows: 

If each set of three alternate vertices of a hexagon is a set of three collinear 
points, and the three pairs of opposik sidcs intersect, then the three points 
of intersection are collinear. 

EXERCISES 

1. If a hexagon ABCDEF has two opposite sides BC and E F  parallel 
to the diagonal AD, and two opposite sides CD and FA parallel to the 



COLLINEARITY AND CONCURRENCE 

diagonal BE, while the remaining sides DE and AB also are parallel, 
then the third diagonal CF is parallel to AB, and the centroids of 
AACE and ABDF coincide. 

2. In how many ways can two triads of collinear points be regarded as the 
triads of alternate vertices of a hexagon? 

3.8 Pascal's theorem 

We come now to a remarkable theorem discovered by the philosopher 
and mathematician Blaise Pascal (1623-1662) a t  the age of sixteen: 

THEOREM 3.81. If all six ve~tkes  of a hexagon lie on a circle and the 
three pairs of opposite sides intersed, then the three points of intersection 
arc collinear. 

Nobody knows how Pascal himself proved this, because his original 
proof has been lost. However, before i t  was lost, it was seen and praised 
by G. W. Leibniz (co-discoverer with Newton of the differential and 
integral calculus). This state of affairs challenges us to try to reconstruct 
the lost proof, that is, to give a proof using only the results and methods 
that were available in Pascal's time. One such proof, using only the 
first three books of Euclid, was devised by Forder [14, p. 133; but 
that is a tour de force, and Pascal more likely used Menelaus's theorem 
in some such way as the following. 

Figure 3.8A shows one of the many ways in whicha hexagon ABCDEF, 
inscribed in a circle, may be arranged. (The reader can easily see what 
modifications in the argument will be needed if the arrangement is dif- 
ferent, e.g., if the same six vertices are joined by sides in one of the 
fifty-nine other possible ways.) We wish to prove that the three points 
of intersection 

are collinear. 
Let us assume that the three lines AB, CD, EF form a triangle 

UVW, as in Figure 3.8A. Applying Theorem 3.41 to the three triads of 
points LDE, AMF, BCN on the sides of this triangle UVW, we 
obtain 

Multiplying all these expressions together, and observing that, by 
Theorem 2.11 (on page 28), 



PASCAL'S THEOREM 75 

W D U E V A U F V B W C  U E X U F V A X V B W C X W D  - - - - =  
UD V E W A  V F W B U C  U C X U D V E X V F W A X W B  

= 1, 

we are left with 

whence L, M, N are collinear, as de5ired.t 

Figure 3.8A 

The line containing the three points L, M, N is called the Pascal 
line of the hexagon ABCDEF. As we saw in Section 3.7, the same six 
points determine sixty hexagons; consequently they determine (in 
general) sixty Pascal lines. These sixty lines form a very interesting con- 
figuration: certain sets of them are concurrent, certain sets of the points 
of concurrence are collinear, and so on. 

According to a brief Essay pour les coniques which has survived, Pascal 
was well aware that his theorem applies not only to a hexagon inscribed 

t This attempt to reconstruct Pascal's proof appeared in the 18th edition of Theodor 
Spieker's Lehrbuch &r ebenen Geomdrie (Potsdam, 1888). See also [17, p. 2351 or 
[24, p. 261. For a different attempt, see Coxeter and Greitzer, L'l~exagramme de Pascal. 
Un essai pour rcconstitucr cdle d6couverk, Le Jeune Scientifique (Joliette, Quebec) 2 
(1963), pp. 70-72. 
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in a circle but equally well to a hexagon inscribed in a conic. The converse 
theorem, proved independently by William Braikenridge and Colin 
MacLaurin, can be found in textbooks on Projective Geometry [e.g. 
7, p. 851: 

If the three pairs of opposik sides of a hexagon meet at three collinear 
points, then the six vertices lie on a conic, which may degenerate into a 
pair of lines (as in Theorem 3.51). 

Figure 3.8B 

By permitting vertices of the inscribed hexagon to coalesce and 
labeling them carefully, we can deduce some interesting theorems con- 
cerning inscribed pentagons and quadrangles. I n  such cases the side 
whose endpoints are made to coincide becomes a point, but the line 
containing it becomes the tangent to the circle (or conic) a t  that point. 
Consider, for instance, the inscribed quadrangle ADBE shown in Figure 
3.8B. By regarding the crossed quadrangle ABDE as a degenerate hex- 
agon with B  = C and E = F, we can apply Pascal's theorem with 
the conclusion that the tangents a t  B  and E meet a t  N on the join of 

L = A B - D E  and M = B D - E A .  

EXERCISES 

1. If five of the six vertices of a hexagon lie on a circle, and the three pairs 
of opposite sides meet a t  three collinear points, then the sixth vertex lies 
on the same circle. 

2. For a cyclic quadrangle ABCE with no parallel sides, the tangents a t  
A  and C  meet on the line joining A B * C E  and BC* E A .  
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3.9 Brianchon's theorem 

C. J. Brianchon (1760-1854) discovered an interesting theorem (related 
in a subtle manner to Pascal's) involving a hexagon circumscribed about 
a conic. Brianchon's proof employs the "duality" of points and lines, 
which belongs to projective geometry. However, in the case when the 
conic is a circle, the search for a Euclidean proof became a challenging 
problem. This challenge was successfully answered by A. S. Smogor- 
zhevskii [27, pp. 33-34]. Before giving the details, let us prove the 
following lemma: 

Let P' and Q' be two points on the tangents a4 P and Q to a circk (on 
the same side of the line PQ) such that PP' = QQ'. Then there is a 
circk touching the lines PP' and QQ' d P' and Q', respectively. 

Figure 3.9A 

In fact, the .whole figure (Figure 3.9A) is symmetrical about the 
perpendicular bisector of PQ, which is also the perpendicular bisector 
of P'Q' and a diameter of the given circle. The perpendiculars to PP' 
and QQ' a t  P' and Q' both meet this "mid-line" or "mirror" a t  the 
same point, which is the center of the desired circle. 

We are now ready for SmogorzhevskiI's proof of 

THEOREM 3.91. If all six sides of a hexagon touch a circle, the three 
diagonals are concurrent (m possibly parallel). 

Let R, Q, T, S, P ,  U be the points of contact of the six tangents 
AB, BC, CD, DE, EF, FA, as in Figure 3.9B. We assume, for sim- 
plicity, that the hexagon ABCDEF is "convex", so that all three diago- 
nals AD, BE, C F  are secants of the inscribed circle (and that the pos- 
sibility of parallelism does not arise). On the lines EF, CB, AB, ED, 
CD, A F  (extended), take points P', Q', R', S', T', U' so that 

PP' = QQ' = RR' = SS' = TT' = UU' 

(any convenient length), and construct the circles I (touching PP' and 
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QQ' at  P' and Q'), I1 (touching RR' and SS' at  R' and S t ) ,  I11 
(touching TT' and UU' a t  T' and U') ,  in accordance with the 
lemma. 

We now make use of our knowledge that two tangents to a circle from 
the same point have equal lengths. Since A R = A U and RR' = UU' 
weha~e~byaddition, AR' = AU'. Since DS = DT and SS' = TT' 
we have, by subtraction, DS' = DT'. Thus both A and D are points 
of equal power (Section 2.2) with respect to circles I1 and 111; and 
their join A D  coincides with the radical axis of these two circles. Simi- 
larly, B E  is on the radical axis of circles I and 11, and CF is on the 
radical axis of circles I11 and I. As we saw in Section 2.3, the radical axes 
of three non-coaxal circles, taken in pairs, are concuwettt (or possibly 
parallel). We have exhibited the diagonals of our hexagon as the radical 
axes of three circles. Since these diagonals obviously cannot coincide, 
the circles are non-coaxal, and the proof is complete. 

Figure 3.9B 

The converse theorem, belonging to projective geometry, is as follows 
CI, P. 831: 

If the three diagonals of a hexagon are concurrent, the six sides t m h  a 
conic, which may degenerak into a pair of points (like the point-pair FL 
for the hexagon ABDENM in Exercise 2 of Section 3.5). 
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By permitting sides of the circumscribed hexagon to coalesce and 
labeling them carefully, we can deduce some interesting theorems con- 
cerning circumscribed pentagons and quadrangles. In  such cases the 
common vertex of two coincident sides becomes their point of contact 
with the circle (or conic). 

Figure 3.9C Figure 3.9D 

Consider, for instance, the circumscribed pentagon ABCDE shown in 
Figure 3.9C. By regarding it as a degenerate hexagon ABCDEF with a 
"straight angle" at  F, we can apply Brianchon's theorem with the con- 
clusion that the point of contact of the side EA ofthe circumscribed pentagon 
ABCDE lies on the line joining C to the point of intersection AD*BE. 

Similarly, a circumscribed quadrangle BCEF, whose sides FB and 
CE touch the circle at A and D, may be regarded as a degenerate 
hexagon, with the conclusion that the diagonals B E  and CF  of the 
quadrangle meet on the line AD that joins the points of contact of FB 
and CE with the circle. 

EXERCISES 

1. In Figure 3.9D, the line PQ joining the other two points of contact 
also passes through the intersection of the diagonals. 

2. In Figure 3.9D, consider the hexagon to be ABQCEF. What lines are 
now concurrent? 

3. Does Brianchon's theorem suggest a new approach to Exercise 3 of 
Section 1.4? 
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Transformations 

By faith Enoch was translated that he should not see death; 
and was not found, because God had translated him: for 
before his translation he had this testimony, that he pleased 
God. 

Hcbrus, 11 :5 

In a remark at the end of Section 1.6, we obtained the right angle 
between FD and OB (Figure 1.6A) by rotating the perpendicular lines 
HD and CB through equal angles a about D and B, respectively. 
In  the preamble to Theorem 1.71, we observed that the two similar 
triangles ABC and A'B'C' have the same centroid and that, since their 
orthocenters are H and 0 ,  AH = 20A'. Finally, in the remark after 
Theorem 1.81, we used a half-turn to interchange the orthocenters of the 
two congruent triangles A'B'C' and KLM. The rotation, dilatation, 
and half-turn are three instances of a transformation which (for our 
present purposes) means a mapping of the whole plane onto itself so 
that every point P has a unique image P', and every point Q' has a 
unique prototype Q. This idea of a "mapping" figures prominently in 
most branches of mathematics; for instance, when we write y = f(x) 
we are mapping the set of values of x on the set of corresponding values 
of y. 

Euclidean geometry is only one of many geometries, each having its 
own primitive concepts, axioms, and theorems. Felix Klein, in his 
inaugural address at Erlangen in 1872, proposed the classification of 
geometries according to the groups of transformations that can be 
applied without changing these concepts, axioms, and theorems. In 
particular, Euclidean geometry is characterized by the group of simi- 
larities; these are angle-preserving transformations. An important special 
case of a similarity is an isometry. This is a length-preserving transforma- 
tion such as a rotation or, in particular, a half-turn. Isometries are at 
the bottom of the familiar idea of congruence: two figures are congruent 
if and only if one can be transformed into the other by an isometry. 

80 
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4.1 Translation 

Apart from the identity, which leaves all points just where they were 
before, the most familiar transformation is the translation, which preserves 
the distance between any two points and the direction of the line through 
them. 

Figure 4.1A Figure 4.1B 

If A'B' is the translated image of a line segment AB, then either 
A, B, A', B' lie on a line, as in Figure 4.1A, or A A'B'B is a parallelo- 
gram, as in Figure 4.1B. (In the former case we naturally speak of a 
degenerate parallelogram A A'B'B. ) Thus the translation is determined 
by the directed segment A A', or equally well determined by infinitely 
many other segments, such as BB', having the same distance and di- 
rection. Another name for a translation is a vector, and we use the nota- 

+ 
tion z' = BB'. I n  particular, the identity may be regarded as a 
translation through no distance, or as the zero vector. 

Figure 4.1C 

The fact that a translation preserves the shape and size of any figure 
is used in the proofs of various theorems on area. For example (see 
Figure 4.1C), in deriving the usual formula for the area of a parallelo- 
gram ABCD with an acute angle at A, we cut off a right-angled 
triangle AHD and stick it  on again after translating it to the position 
BH'C, thus obtaining a rectangle HH'CD. 

Figure 4.1D illustrates the problem of inscribing, in a given circle, a 
rectangle with two opposite sides equal and parallel to a given line seg- 
ment a. This can be solved by translating the circle along either of the 
two equal and opposite vectors represented by a. If the old and new 
positions of the circle meet a t  B and C, these are two vertices of the 
desired rectangle ABCD, whose sides AB and DC are equal and 
parallel to a. 
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Figure 4.1D 

EXERCISES 

1. In AABC (Figure 4.1E) "inscribe" a line segment equal and parallel 
to the given segment a. 

2. Draw a figure to illustrate part of the infinite pattern that can be derived 
from a given equilateral triangle ABC by applying all the vectors con- 
sisting of an integral multiple of 2 plus an integral multiple of A C. 

Figure 4.1 E 

4.2 Rotation 

Another kind of transformation that preserves distance is rotation. 
Here the entire plane is turned about some point through a given angle. 
Thus the size and shape of any figure are kept invariant, but its points 
all move along arcs of concentric circles. The center (which may or 
may not "belong" to the figure being rotated) is the only point that 
remains fixed. 

As an example of the use of a rotation, let us consider AABC (Figure 
4.2A) with equilateral triangles BPC, CQA, ARB erected (externally) 
on the three sides. After drawing the lines BQ and CR, which meet at  
F, we observe that a rotation through 60' about A takes AARC into 
AABQ. Hence L RFB = 60' and RC = BQ. Similar reasoning 
shows that PA = CR. Thus 

A P  = BQ = CR. 
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Moreover, since 

LRFB = 60' = L R A B  and LCFQ = 60' = LCAQ, 

the quadrangles ARBF and CQA F are cyclic; and since L BFC = 120' 
while L CPB = 60', BPCF is a third cyclic quadrangle. Therefore the 
circumcircles of the three triangles BPC, CQA , A RB all pass through 
the point F. This is called the Fermat point of AABC. Having defined 
it  as the point of intersection of BQ and C R ,  we now see that it must 
also lie on A P.  

Figure 4.2A 

In Euclid's proof of the theorem of Pythagoras, squares CBIG, A CK J ,  
BADE are erected externally on the sides of the given right-angled tri- 
angle ABC and the last square is dissected into two pieces by means of 
the altitude CH, as in Figure 4.2B. Here O1, 02, 0 8  are the centers of 
the three squares and the meaning of U, V, W, X ,  Y is clear. Al- 
though there are easier ways than Euclid's to prove Pythagoras's theorem 
itself, his figure suggests many unexpected results. 

After drawing the Sines AI,  B J ,  C D  and C E ,  we observe that a 
rotation through 90' about A will take AADC into A A B J .  There- 
fore B J = DC and BJ is perpendicular to CD. Similarly, AI and 
CE are equal and perpendicular. 

The similar triangles ABCX N ABK J and ACA Y N AGAI yield 
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whence 

" . 
Figure 4.2B 

EXERCISES 

1. If squares are erected externally on the sides of a parallelogram, their 
centers are the vertices of a square. [ZP, pp. 96-97.) 

2. In Figure 4.2B, ( i )  the three lines AZ, BJ, CH are concurrent; 
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(ii) 0102 = CG, and these lines are perpendicular; (iii) U, V, W 
are the midpoints of GK, JD, EZ. 

3. Construct an equilateral triangle such that a given point inside it is 
distant 2 units from one vertex, 3 units from a second vertex, and 4 
units from the third vertex. 

One kind of rotation shares with translations the property of trans- 
forming every line into a parallel line. This is the k ' f - tun  or rotation 
through 180°, which transforms each ray into an oppositely directed 
ray. Clearly, a half-turn is completely determined by its center. Since 
a translation transforms each ray into a parallel ray, the effect of two 
half-turns applied successively is the same as the effect of a translation: 
in brief, the "sum" of two half-turns is a translation (which reduces to 
the identity if the two half-turns have the same center). More precisely, 
if points A ,  B, C are evenly spaced along a line, so that B is the mid- 
point of AC, the half-turn about A leaves A invariant, and the half- 
turn about B takes A into C; thus the sum of these two half-turns is 

A 

the translation AC, and is the same as the sum of the half-turns about 
B and C. 

Figure 4.3A illustrates the sum of half-turns about 01 and 0 2 .  The 
line segment AB is transformed first into A'B' (oppositely directed) 

4 

and then into A1'B"; thus the sum is the translation A A" = BB". 
Many old and familiar theorems can be proved simply when half-turns 

are used. In Figure 4.3B, 0 is the common midpoint of two segments 
AC and BD. Thehalf-turnabout 0, taking AB into CD, shows that 
ABCD is a parallelogram. Again, in Figure 4.3C, M  and N  being the 
midpoints of AB and AC, we see that the sum of half-turns about these 
two points is the translation M ?  = sd, whence MN is parallel to 
BC and half as long. 

A B 

Figure 4.3A Figure 4.3B 
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Figure 4.3C 

EXERCISES 

1. Let A be one of the common points of two intersecting circles. Through 
A, construct a line on which the two circles cut out equal chords. 

2. Through a point A outside a given circle, construct a line cutting the 
circle a t  P and Q so that AP  = PQ. 

3. If the opposite sides of a hexagon are equal and parallel, the diagonals 
(joining opposite vertices) are concurrent. 

4.4 Reflection 

A third type of transformation that preserves distance is the rej?ection 
in a line HK, called the mirror. Each point on the mirror (such as H 
or K ) is invariant, i.e. its own reflection. The reflected image of a point 
A not on the mirror is the point A' on the line through A perpen- 
dicular to the mirror such that A A' is bisected by the mirror. In  Figure 
4.4A, the segment A'B' is the image of the segment AB. I t  is a simple 
matter to show that, if C is any point on the line AB, its image C' 
must lie on the line A'B'. The trapezoid AA'B'B has diagonals AB' 
and A'B which are images of each other; their common point X, being 
its own image, lies on the mirror HK. The properties of vertical angles 
permit us to label L AXH = L B'XK, while the congruence of ABXK 
and AB'XK tells us that L B'XK = L KXB. Hence 

L AXH = LKXB. 

I t  follows that the shortest path from an arbitrary point A to the 
mirror, and thence to a given point B on the same side of the mirror, is 
the broken line AXB. For, as we see in Figure 4.4B, if any other point 
Y were taken on the mirror, the path A Y + YB = A'Y + YB would 
be longer than the straight segment A'B = AX + XB. 
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Figure 4.4A Figure 4.4B 

This, incidentally, shows us how to solve geometrically a famous ex- 
tremal problem without having recourse to the calculus. Physicists tell 
us that a ray of light travelling from a point A to a mirror and thence 
to another point B, will do so along a path that minimizes the travel time. 
In  a homogeneous medium, this time is proportional to the distance 
travelled. So a ray of light that goes from A to B via a mirror and that 
meets the mirror a t  an angle a, leaves it making an equal angle; for, 
this is the result of requiring a path of minimum length. Physicists 
customarily measure angles from the normal, a lime perpendicular to the 
mirror, instead of from the mirror itself. In  Figure 4.4C, L i is called the 
angle of incidence, and L r is called the angle of reflection. 

Figure 4.4C 

EXERCISES 

1. Given a scalene triangle ABC with sides capable of reflecting light, 
exactly where on the side AB should a light source be placed so that an 
emanating ray, after being reflected successively from the two other sides, 
will go back to the source? Hint: See Section 1.6. 

2. If the base and area of a triangle are fixed, the perimeter will be minimal 
when the triangle is isosceles. 

3. Do Exercise 1 of Section 4.3 by using a reflection. 
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4.5 Fagnano's problem 

The properties of the mirror image can be used to derive many interest- 
ing theorems simply and in a striking fashion. We shall use these proper- 
ties to solve the problem of finding the triangle of minimal perimeter 
inscribed in a given acute-angled triangle. This is known as Fagnano's 
problemt. 

Figure 4.5A 

For a solution (see Figure 4.5A), we begin with the arbitrary acute- 
angled triangle ABC, in which we have inscribed two triangles: the 
orthic triangle (dashed lines) and any other triangle (dotted lines). Let 
us reflect AABC, with contents, in its sides AC, CB, BA, AC, CB 
in succession. Now we inspect the diagram to see what this continued 
sequence of reflections has done to our triangles. 

Disregarding the two points marked C, we observe a broken line 
BABABA , having angles (measured counterclockwise) 2A at the first 
point A (top left), 2B a t  the second point B (in themiddle), -2A 
a t  the second point A (at the bottom), and -2B a t  the third point B 
(on the right). The zero sum of these four angles indicates that the final 
side BA is congruent by translation to the original side BA, and that 
pairs of corresponding points on these two sides will form a parallelo- 
gram such as PP'Q'Q. 

We now recall that the altitudes of AABC bisect the angles of its 
orthic triangle. I t  follows that, after the indicated reflections, the sides 
of the orthic triangle will, in order, lie on the straight line PP', shown 
in Figure 4.5A. Analogously, the sides of any other triangle, such as the 

t Proposed in 1775 by Fagnano, who solved it by calculus. The proof shown here 
is due to H. A. Schwarz. For another proof, also using reflections, see Coxeter [6, 
p. 211 or Kazarinoff [18, pp. 76-77] or Courant and Robbins (4, p. 3471. Schwarz's 
treatment was extended from triangles to (2s + 1)-gons by Frank Morley and F. V. 
Morley, Inversive Geometry (Ginn, Boston, 1933), p. 37. 
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dotted triangle in the figure, will form a broken line reaching from Q (on 
the original AB ) to Q' (on the final AB ) . Since PQ is equal and 
parallel to P'Q', the straight segment is equal to PP', which is 
twice the perimeter of the orthic triangle. This is clearly shorter than the 
broken line from Q to Q', which is twice the perimeter of the other 
triangle. Hence the triangle of minimal perimeter is the orthic triangle. 

4.6 The three jug problem 

A curious application of reflectiont is to the solution of problems re- 
quiring the division of a liquid into stated portions with what appear 
to be inadequate measuring devices. This application requires a pre- 
liminary account of trilinear coordinates, which we now present. 

As a welcome relief from the ordinary squared paper, used for plotting 
points with given Cartesian coordinates, one can sometimes buy "tri- 
angulated" paper, ruled with three systems of parallel lines dividing the 
plane into a tessellation of small equilateral triangles. Such paper is 
convenient for plotting points that have given trilinear coordinates with 
respect to a (large) equilateral triangle. I n  the plane of such a triangle 
ABC, with side a and altitude h, the trilinear coordinates of a point P 
are defined to be the distances z, y, z of P from the three sides BC, 
CA, AB, regarded as positive when P is inside the triangle. We call P 
the point (2, y, z). Since 

3ax + 3ay + 3az = (PBC) 4- (PCA) 4- (PAB) 

we have 
= (ABC) = +ah, 

z + y + z  = h. 

These coordinates are ideal for representing any situation in which 
three variable quantities have a constant sum. When one of the quanti- 
ties stays fixed while the other two vary (with a constant sum), the 
point (2, y, z) moves along a line parallel to one side of the triangle. 
In  particular, the sides themselves have the equations 

and the vertices A, B, C have the coordinates (h, 0, O), (0, h, 0),  
(O,O, h) 

One such situation arises when h pints (or ounces) of a liquid are 
distributed into three vessels so that there are z pints in the first, y in 
the second, and z in the third. The operation of pouring liquid gradually 

t M. C. K. Tweedie, Matlremalical Gaadk 23 (1939), pp. 278-282; A. I. Perel'man, 
Zanumatel'naya Geometria (Moscow, 1958); T. H. O'Beime [21], pp. 49-75. 
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from the second vessel into the third is represented by a motion of the 
point (2, y, z) along a line z = constant in the direction in which y 
decreases while z (correspondingly) increases. If each vessel can hold h 
pints, each coordinate can take any value from 0 to h, and we have the 
(trivial) problem [h; h, h, h], in which the domain of operations is the 
whole triangular region 

Of far greater interest is the problem [h; a, b, c], where h 1 a > b > c. 
Now the three given vessels have capacities a, b, c, and the problem is 
to measure out a stated quantity d of liquid by repeatedly pouring from 
one vessel into another, either emptying the former or filling the latter 
(or possibly doing both things at  once). The domain of operation is now 
restricted to the region 

which may be a (regular or irregular) hexagon bounded by the six limes 

but may in special circumstances reduce to a pentagon, trapezoid, 
parallelogram or (as we have already seen) the whole equilateral triangle. 

For instance, Figures 4.6A and 4.6B illustrate the problem [8; 7,6,3] 
in which 8 pints of liquid are distributed in a given manner in vessels 
of capacities 7, 6, 3, and we wish to measure out (say) 4 pints. Now 
the domain of operation is the hexagonal region 

which, being bounded by the six lines 

has the vertices 

or, in an abbreviated notation, 710, 260, 062, 053, 503, 701. 
Figure 4.6A draws attention to the point 332 which represents a 

typical state: 3 pints in the first vessel, the same in the second, and 2 
in the third. The broken lines radiating from this point represent the six 
possible operations of pouring. The path from 332 to 530 represents the 
act of emptying the last vessel into the first; the opposite path from 
332 to 233 represents the act of filling the third vessel out of the first; 
and the path from 332 to 062 represents the act of emptying the first 
vessel into the second, which is thereby filled. 

The hatched lines in Figure 4.6B show one of the various ways of 
passing from 332 to 440 and thus dividing the 8 pints into two equal 
portions. The whole path is a broken line, which proceeds always along a 
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direction parallel to one side of the triangle of reference and bends only 
when it reaches a side or vertex of the hexagon that bounds the domain 
of operation. Continuing this path, by the same rules, beyond 440, we 
would eventually reach all the points with integral coordinates on the 
boundary of the domain; i t  follows that, in the [8; 7,6,3] problem, any 
whole number of pints (less than 8) can be measured out. 

A 

B C B 
080 062 053 

C 
008 080 062  053 008 

Figure 4.6A Figure 4.6B 

Figure 4.6C illustrates the problem [lo; 8, 7, 61, in which 10 pints 
of liquid have to be divided by means of vessels holding 8, 7, and 6 
pints, respectively. Now we can easily measure out 1 pint, or 2 or 3 
or 4. But we can never achieve 5 (unless one of the vessels is known to 
contain 5 initially), because the three points 055, 505, 550 form a tri- 
angular path which runs round and round like a vicious circle and cannot 
be entered from any other path. This kind of phenomenon arises in any 
problem [h; a, b, c] with 

Figure 4.6C 
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A slightly different kind of anomaly occurs in the problem [lo; 8,6,4] 
(Figure 4.6D), in which the paths that visit 550 form a pattern of small 
equilateral triangles and regular hexagons. This illustrates the obvious 
fact that an odd number of pints can never be measured with vessels 
whose capacities are all even. Such troubles can be expected for any 
problem [h; a, b, c] in which the numbers a, b, c have a common 
divisor greater than 1. 

Figure 4.6D 

The most famous problems [h; a, b, c] are those in which 

so that the domain of operation is bounded by the parallelogram whose 
vertices are aOO, cbO, Obc, bOc. Figures 4.6E and 4.6F show the seven- 
step and eight-step solutions of the problem [8; 8, 5, 31, which can be 
expressed as follows: Two men have a vessel filled with 8 pints of some 
liquid, and two empty vessels with capacities of 5 pints and 3 pints. 
They wish to divide the eight pints of liquid equally. 

The first move must be to fill either the 5-pint vessel, as in Figure 4.6E, 
or the 3-pint vessel, as in Figure 4.6F. Thereafter, whenever the path 
reaches one of the four lines y = 0, y = 5, z = 0, z = 3, which 
are the sides of our parallelogram (the domain of operation), we regard 
that line as a mirror. I n  other words, we follow the path of a billiard ball 
which is struck so as to start out along one edge of a table having this 
somewhat unusual shape. (The rule of successive reflections is justified 
by the fact that each piece of the broken line, being parallel to a side of 
the triangle of reference, represents the act of pouring liquid from one 
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vessel into another while the third remains untouched.) We thus obtain 
the seven-step solution 

800, 350, 323, 620, 602, 152, 143, 440 

and the eight-step solution 

800, 503, 530, 233, 251, 701, 710, 413, 440. 

Clearly, such a problem (with a = b + c ) can be solved whenever 
the integers b and c are coprime, that is, have no common divisor 
greater than 1. 

053 

Figure 4.6E Figure 4.6F 

EXERCISES 

1. We are given a 12-pint vessel filled with a liquid, and two empty vessels 
with capacities of 9 pints and 5 pints. How can we divide the liquid into 
two equal portions? 

2. Three men robbed a gentleman of a vase, containing 24 ounces of balsam. 
Whilst running away, they met a glass-seller, of whom they purchased 
three vessels. On reaching a place of safety, they wished to divide the 
booty, but found that their vessels could hold 13, 11 and 5 ounces 
respectively. How could they divide their booty into equal portions? 
c1, PP. ~ 4 0 . 1  

3. Let two points P and P' have trilinear coordinates (x, y, z) and 
(x', y', z') with respect to a triangle ABC. If these coordinates satisfy 
the equations 

xx' = yy' = zz', 

the two points are isogmal conjugates: 
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4.7 Dilatation 

The transformations presented so far have one common characteristic: 
they transform each figure into a congruent figure. All transformations 
that have this property of preserving distance are called congruence 
transformations or isometries. 

I t  is possible, however, to make good use of a transformation that 
changes each figure into a similar figure. Such a similarity preserves 
angles, though it  may alter distances. However, all distances are in- 
creased (or decreased) in the same ratio, called the ratio oj magn$calion. 
Thus any line segment A B  is transformed into a segment A'B' whose 
length is given by 

A'B' = kAB.  

The ratio k can be greater than, equal to, or less than 1, though in the 
last two cases the word "magnification" is less obviously appropriate. 
Similarities include, as  special cases, isometries, for which k = 1. 

These remarks can be made more precise by defining a similarity to 
be a transjormation that preserves ratios oj distances. For this implies that 
i t  preserves both collinearity and angles. 

Figure 4.7A 

The simplest kind of similarity is a dilatalion, which transjorms each 
line into a parallel line. Any dilatation that is not merely a translation 
is called a central dilatation, because all the lines joining corresponding 
points of the figure and its image are concurrent. To see why this is so, 
examine Figures 4.7A and B, in which the corresponding segments AB 
and A'B' (lying on parallel lines) satisfy the vector equation 

A%' = * A B .  

For any point C that forms a triangle with A and B,  the image C' is 
where the line through A' parallel to AC meets the line through B' 
parallel to BC. If the dilatation is not a translation, the lines A A' and 
BB' are not parallel but meet at a point 0, such that either 

G' = k 6  and G' = k z ,  

as in Figure 4.7A, or 
d 

OA' = - k c  and 
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as in Figure 4.7B. Remembering that parallel lines cut transversals into 
proportional segments, we easily deduce that Ct lies on OC; in fact, 

Varying Figure 4.7A by making 0 recede far away to the left, we 
see how a transldimt arises as the limiting form of a central dilatation 
d 

AtB' = ~AB when k tends to 1.  Still more easily, we can change 
Figure 4.7B so as to make-0 the midpoint of AA'; thus the central 
dilatation ~3' = -kAB includes, as a special case, the half-turn 

for which ABA'B' is a parallelogram with center 0. 

Figure 4.7B 

EXERCISES 

1. What is the locus of the midpoint of a segment of varying length such 
that one end remains fixed while the other end runs around a circle? 

2. Given an acute-angled triangle ABC, construct a square with one 
side lying on BC while the other two vertices lie on CA and AB, 
respectively. 

4.8 Spiral hi lar i ty  

If a figure is first dilated and then translated, the final figure and the 
original figure still have corresponding lines parallel, so that the result 
is simply a dilatation. More generally, and for the same reason, the sum 
of any two dilatations (i.e. the effect of first performing one, then the 
other dilatation) is a dilatation. On the other hand, if a figure is first 
dilated and then rotated, corresponding lines are no longer parallel. 
Thus the sum of a dilatation and a rotation (other than the identity or 
a half-turn) is not a dilatation, though it is still a direct similarity, 
preserving angles in both magnitude and sign. 
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The sum of a central dilatation and a rotation about the same center 
is called a "dilative rotation" or spiral similarity. This little known 
transformation can be used in the solution of many problems. 

If, as  in Figure 4.8A, a spiral similarity with center 0 takes AB 
to A'B', then AOAB and AOA'B' are directly similar, and 

L AOA' = LBOB'. 

Moreover, as in the case of a simple dilatation, the ratio of magnifica- 
tion is 

Since any spiral similarity is completely determined by its center 0, 
ratio k, and angle of rotation 0, let us agree to denote it by the symbol 

(As usual, a rotation in a counterclockwise direction will be positive, 
a rotation in a clockwise direction negative.) In particular, O(k, 0") and 
O(k, 180") are dilatations of the types illustrated in Figures 4.7A and 
4.7B, respectively, and 0(1,0) is a rotation. 

Figure 4.8A 

As an example of the use of spiral similarities, let us prwe 

THEOREM 4.81. If squares, with centers 01, 0 2 ,  08 ,  are erected ez- 
ternally on thesides BC, CA, AB of AABC, then thelinc segments 
and COs are equal and perpendicular. 

In  the notation of Figure 4.8B, the spiral similarity A ( d ,  45') will 
transform ACA 0 8  into AKA B, and the spiral similarity C ( d ,  -45") 
will transform A a C a  into ABCK. Since the transforms have the 
side BK in common, arising from OSC and OIG, respectively, and 
since the magnification ratio is the same in both transformations, these 
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two sides of the original triangles must have been equal to start with. 
Also, since the angle between the transforms of 01C and 0101, by 
similarities involving rotations through 45' and -4S0, is zero, these 
lines must originally have been perpendicular. The proof is now complete. 
(Notice that the three lines A&, B01, COt, being the altitudes of 
A010201, are concurrent.) 

Figure 4.8B 

Having defined a spiral similarity a s  the sum of a central dilatation 
and a rotation about the same center, we naturally wonder what is the 
sum of a central dilatation and a rotation whose centers are distinct. 
the simple and surprising answer-a spiral similarityis a consequence 
of the fact that no more complicated kind of direct similarity exists: 

TIEOREM 4.82. Any two directly simikrr figwes are related &her by a 
tramlation m by a spiral simikrrity. 

To prove this, consider two corresponding segments A B and A'B' of 
directly similar figures. If AB is parallel to A'B' and of the same length, 
then the transformation is a translation. To see this let C be any point 
not on AB and let C' be its image. Then, from the direct similarity of 
the figures, we may conclude that triangles ABC and A'B'C' are con- 
gruent; their corresponding sides are parallel. I t  follows that all segments 
joining points and their images are parallel and equal, so the transforma- 
tion is a translation. 
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Figure 4.8C 

Next, suppose AB and A'B' are not of the same length. (If the four 
points A ,  B, A', B' do not form a quadrangle, pick a new pair of cor- 
responding segments so that they do, and name these AB and A'B'. 
For instance, if B lies on A A', as in Figure 4.8D, use the midpoint of 
AB instead of A, and the midpoint of A'B' instead of A'. ) Then the 
lines A A'  and BB' meet at a point D, as in Figure 4.8C. Let the circles 
ABD and A'B'D, which have the common point D, meet again at 0 
(or, if they have D as a point of contact, let 0 be another name for D ). 
By comparing the angles OAB, ODB, ODB', and OA'B', we see that 
L OAB = L OA'B'. Similarly, L OBA = L OB'A'. Thus AOAB 
and AOA'B', being directly similar, are related by the spiral similarity 
O(k, 0) where 

OA ' k = -  
OA 

and 0 = LAOA'. 

In other words, every direct similarity that is not a translation has an 
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invariant point. Moreover, the invariant point is u n i p e .  For, two such 
points, say A and B, would yield an invariant segment AB. Since 

the similarity would be an isometry leaving two points fixed. If this 
transforms a triangle ABC into ABC', we can locate C' as lying on 
the circles with centers A and B, radii AC and BC. Thus the only 
isometrics leaving A and B invariant are the identity, which is a trans- 
lation (through distance zero), and a reflection, which is not direct 
(because it reverses the sign of an angle). 

Figure 4 8D 

For instance, if two maps of the same state, on different scales, are 
drawn on tracing paper and superposed,t there is just one place that is 
represented by the same spot on both maps. 

These ideas have been developed by Julius Petersen (1880) and P. H. 
Schoute (1890) $ into a very beautiful theorem, of which the following is 
a special case: 

THEOREM 4.83. If ABC and A'B'C' are two directly similar triangles, 
while AA'A", BB'B", CC'C" are three directly similar triangles, then 
AA "B"Ct' is directly similar to AA BC. 

t Here the word "superposed" should he interpreted to mean that the smaller scale 
map lies entirely within the larger scale map. In this case it is easy to show that the 
center of the spiral similarity is indeed a point within the state. 

$ See J. Petersen [25, p. 741 or H. G. Forder [12, p. 53). 
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If AABC and AA'B'C' are congruent by translation, this is obvious. 
if not, let O(k, 0) be the unique spiral similarity that transforms ABC 
into A'B'C', so that 

OA' OB' OC' k = - = - = -  
OA OB OC ' 

0 = L AOA' = LBOB' = LCOC', 

as in Figure 4.8D. It follows that 

AOAA' - AOBB' - AOCC'. 

But we are assuming 

AA A'A" - ABB'B" - ACC'C". 
Hence 

AOAA" - AOBB" - AOCC"; 

OA" OB" OC" - = - = - - 
OA OB OC 

- ktJ 

and there is a spiral similarity O(kl, 0') relating AABC to AA"B"C1'. 
Another special case of the Petersen-Schoute theorem, proved in the 

same way, is 

THEOREM 4.84. When all the points P ME AB are related by a simi- 
larity to all the points P' on A'B', the points dividing the segments PP' 
in  a given ratio are distinct and collinear m else they all coincide. 

EXERCISES 

1. If AABC is subjected to a spiral similarity about its vertex A in 
such a way that the vertex B travels along the line BC, then the vertex 
C travels along a line. 

2. If AABC is scalene, its inner Napoleon triangle NlNzNa is retrograde; 
i.e., its sense of orientation is opposite to that of AABC and A010203. 
(This was stated without proof in Section 3.3.) 

4.9 A genealogy of transformations 

It is significant that all the transformations which we have been 
discussing are one-to-one correspondences of the whole set of points in 
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the plane with itself. Among these we have considered only continuous 
transfmmatimts (or "homeomorphisms"), that is, transformations which 
map nearby points into nearby points.t Among the continuous trans- 
formations (which are, in a sense, the subject of 0. Ore's book [22]) 
we have discussed the afinities (or "affine transformations"), which 
preserve collinearity and thus take parallel lines into parallel lines. 
Among the affinities we have considered only similarities, which preserve 
ratios of distances, but we have not touched upon the more bizarre vari- 
eties such as the "Lorentz transformation" or Procrustean stretch (which 
changes a circle into an ellipse of the same area). The particular simi- 
larities that we have considered are ismetries, which preserve distance, 
dilatations, which transform each line into a parallel line, and spiral 
similarities which (like some isometries and some dilatations) leave one 
point fixed and preserve the sense of rotation (counterclockwise or 
clockwise). These categories overlap somewhat: among the isornetries, 
we have considered reflections, translations (which are dilatations ac- 
cording to the above definition), and rotations (which are spiral simi- 
larities with ratio of magnification 1). The remaining dilatations are 
central dilatations (which are spiral similarities involving the zero 
rotation). Finally, half-turns are both rotations (through 180') and 
central dilatations. All these relationships can be neatly summarized in 
a genealogical tree, where each "child" is a specialization of its "parent". 

Transformation 

I 
Continuous transformation 

I 
A f i i t y  

t More precisely: If A is a point and A'  its image under a continuous transforma- 
tion, then the image B' of B will fall into an arbitrarily small circle about A' provided 
only that B is sufficiently close to A .  
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EXERCISES 

I n  terms of Cartesian coordinates, a Procrustean stretch transforms 
each point (x, y) into (x', y'), where x' = kx, y' = kE1y. Write 
down analogous expressions for: 

1. The translation that takes (0,O) to (a, b). 

2. Reflection in the y-axis. 

3. Reflection in the line x - y = 0. 

4. The half-turn about the origin 0. 

5. The central dilatation 0 (k, 0') 

6. The spiral similarity O(k, 90'). 

7. An isometry that has not yet been mentioned. 

8. A similarity that has not yet been mentioned. 

9. A continuous transformation that is not an affinity. 

10. A transformation that is not continuous. 
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An Introduction to Inversive 
Geometry 

We place a spherical cage in the desert, enter it, and lock it. 
We perform an inversion with respect to the cage. The lion is 
then in the interior of the cage, and we are outside. 

a. Pctardt 

In  this chapter we relax (to the smallest possible extent) our restriction 
to transformations that are one-to-one over the whole Euclidean plane: 
we allow just one point 0 to have no transform. More precisely, we 
consider a fixed circle with center 0, and "invert" in this circle. What 
happens is that circles through 0 are transformed into lines, and other 
circles into circles. (Problems concerning circles are often simplified by 
thus changing some of the circles into lines. More complicated figures 
suffer radical changes in shape.) 

The following theorem was considered sufficiently challenging to be 
used as a question in the William Lowell Putnam Competition for 1965. 
Our treatment is a distillation of the various solutions submitted. 

t For other types of big game hunting, see Am. Math. Monthly, Aug.-Sept. 1938, 
pp. 446447. 
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THEOREM 5.11. If four points A, B, C, D do not all lie m me circle 
or line, there exist two non-intersecting circles, one through A and C, the 
other through B and D. 

Figure S.1A Figure 5.1B 

To prove this, notice first that p, the perpendicular bisector of seg- 
ment AC, cannot coincide with q, the perpendicular bisector of segment 
BD. If the lines p and q intersect, as in Figure 5.1A, their common 
point 0 is the center of two cmentru circles, one through A and C, 
the other through B and D. If, instead, p and q are parallel, as in 
Figure 5.1B, so also are the lines AC and BD. Consider points P and 
Q, on p and q respectively, midway between the parallel lines AC and 
BD. Clearly, the circles APC and BQD have no common point. 

Two distinct point pairs, AC and BD, are said to separate each other 
if A, B, C, D lie on a circle (or on a line) in such an order that either 
of the arcs AC (or the line segment AC ) contains one but not both of 
the remaining points B and D. The customary symbol for this rela- 
tion is 

AC // BD 
which can be written equally well in seven other ways, such as AC // DB 
or BD // AC. 

A 

Figure S.1C 

If two point pairs, AC and BD, on a line or on a circle, do not sepa- 
rate each other, it is easy to draw two non-intersecting circles, one through 
A and C, the other through B and D. In the case of collinear points 
(Figure SIC) ,  we can use circles having the line segments AC and BD 
as diameters. In the case of concyclic points with AB // CD and 
BC < AD (Figure 5.1D), we can take the centers to be the points of 
intersection of the line BC with the perpendicular bisectors of AC 
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and BD, respectively. A slightly different treatment is needed in the 
easy case when ABCD is a rectangle. 

Figure 5.1D 

If, on the other hand, AC // BD, any circle through A and C, but 
not through B, "separates" B and D, in the sense that one of those 
two points is inside and the other outside. Therefore the given circle 
through A and C intersects every circle through B and D. 

The contrapositive form of Theorem 5.11 tells us that, if every circle 
through two given points has at least two points in common with every 
circle through two other given points, the four given points must be 
collinear (Figure 5.lE) or concyclic (Figure 5.lF). Under such cir- 
cumstances, as we have seen, the two pairs of points separate each other. 
These remarks enable us to redefine separation in a manner that is 
symmetrical and does not presuppose our knowledge of whether the 
four points are collinear or concyclic or neither: 

Two distinct point pairs, AC and BD, are said to separate each other 
if every circle through A and C intersects (or coincides with) every circle 
through B and D. 

Figure 5.1E 

There is actually a third way to characterize separation, without 
mentioning circles at all: 

THEOREM 5.12. The mutual distances oj four distinct points A, B, C, D 
satisjy 

A B X C D + B C X A D  2 A C X B D ,  
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Figure S.1F 

The proof has to be followed with some care, but is interesting. Let us 
first dispose of the case when the four points all lie on one line, so that 
we can temporarily use the notation of directed segments (positive or 
negative, as in Section 2.1). Writing 

A D = x ,  B D = y ,  C D = z ,  
so that 

AB = x - y ,  BC = y - z ,  AC = x - Z ,  

we have 

(5.121) = AC X BD. 

If AC // BD (as in Figure 5.1E), the line segment AC contains one 
but not both of B and D, the ratios AB/BC and AD/DC have oppo- 
site signs, the products AB X DC and BC X AD have opposite signs, 
AB X CD and BC X AD have the same sign, and (5.121) continues 
to hold when each of the expressions AB, CD, etc. is regarded as a 
positive length. If, on the other hand, A and C do not separate B and 
D (Figure 5.lC), all these equivalent statements are reversed: A B X CD 
and BC X AD have opposite signs. Now, when positive lengths are used, 
(5.121) tells us that the positive number AC X BD is equal to the dif- 
ference between the positive numbers AB X CD and BC X AD. Since 
their sum is greater than their difference, it follows that 

A B X C D + B C X A D  > A C X B D .  

This completes the proof of Theorem 5.12 in the case of collinear points. 
Finally, if the four points do not all lie on one line, some set of three 

must form a triangle, and we can rename them (if necessary) so that 
this triangle is ABC and the remaining point (possibly lying on one side 
of the triangle) is D. Theorem 5.12 is now a consequence of Ptolemy's 
theorem (2.61, on page 42) and its converse (2.62), which tell us that 
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the mutual distances of four points A, B, C, D (the first three forming 
a triangle) satisfy 

A B X C D + B C X  AD 2 A C X B D ,  

with the equals sign only when ABCD is a cyclic quadrangle whose 
diagonals are A C and BD. 

EXERCISE 

1. Write down the whole set of eight symbols equivalent to AC//BD. 

5.2 Cross ratio 

Any four distinct points A, B, C, D determine a number { AB, CD] 
called the cross rcrtio of the points in this order; it is defined in terms of 
four of their mutual distances by the formula 

( AB, CD) = 
AC X BD 
AD x BC' 

Using this notation, we can divide both sides of the inequality in Theorem 
5.12 by AC X BD to obtain 

THEOREM 5.21. The cross ratios of four distinct points A, B, C, D 
saiisjy 

(AD, BC] + (AB, DC) = 1 

i f  and only i f  AC // BD. 

This criterion for separation in terms of cross ratios enables us to 
turn the tables: instead of defining separation in terms of circles, we can 
now define circles in terms of separatidn! Any three distinct points 
A, B, C determine a unique circle (or line) ABC, which may be de- 
scribed as consisting of the three points themselves along with all the points 
X such thd 

BC // AX or CA // BX or AB // CX. 

EXERCISES 

1. (AB, CD) = ( & A ,  DC] = (CD, AB) = (DC, BA).  
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2. Evaluate (AD, BC) + (AB, DC) when 
(i) B and D divide the segment AC internally and externally in 

the same ratio, so that AB/BC = AD/CD, 
(ii) D is the center of an equilateral triangle ABC, 
(iii) ABDC is a square, 
(iv) ABCD is a square. 

5.3 Inversion 

The following "quasi-tranformation" was invented by J. Steiner 
about 1830. Given a circle OJ with center 0 and radius k, a s  in Figure 
5.3A, and a point P different from 0 ,  we define the inverse of P to be 
the point P', on the ray OP, whose distance from 0 satisfies the 
equation 

O P X  O P  = Kf. 

It follows from this definition that the inverse of P is P: inversion 
(like the familiar half-turn and reflection) is of period two. Moreover, 
every point outside the circle of inversion w has for its inverse a point 
inside: inversion "turns w inside out". The only self-inverse points we tkc 
points on w. 

Figure 5.3A 

If P describes a locus (for instance, a curve), P' describes the inverse 
locus. Iq particular, the inverse of a circle with center 0 and radius r is 
a concentric circle of radius P/r. 

Any line through 0 is its own inverse, provided we omit the point 0 
itself. (We must not try to avoid this proviso by regarding 0 as its own 
inverse, because then inversion would not be a continuous transformation; 
whenever P is near to 0, P' is far away.) 

Let P be a point inside w (but not a t  0 ) .  Consider the chord TU 
through P, perpendicular to OP, and the point P where the tangents 
a t  T and U intersect. Since AOPT - A O T P ,  the point P' so con- 
structed satisfies 

O P  OT - = -  
OT O P '  

O P  X OP' = Kf; 

thus it  is the inverse of P. 
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Figure 5.3B 

Conversely, to construct the inverse of any point P' outside w, we 
can draw the circle on OP' as diameter. If this circle intersects u a t  T 
and U, the desired inverse P is the midpoint of TU (that is, the point 
where TU meets OP'). 

Figure 5.3B makes plausible the fact that fhe inverse of any line a, lrof 

through 0 ,  is a circle through 0 (minus the point 0 itself), and that the 
diameter through 0 of this circle is perpendicular to a. The details are 
as follows. Let A be the foot of the perpendicular from 0 to a, let A' 
be the inverse of A, let P be an arbitrary point on a, and let P' be 
the point where the ray OP meets the circle on OA' as diameter. Then 
AOAP - AOP'A', 

OP OA' - = - 
OA OP" 

and O P X  OP' = O A X  OA' = kt. 
Conversely, any point P' (except 0 )  on the circle with diameter OA' 

inverts into a point P on the line a. Hence, the inverse of any circk 
through 0 (with 0 omitted) is a line perpendicular to the diameter through 
0, that is, a line parallel to the tangent a t  0 to the circle. 

I t  follows that a pair of intersecting circles, with common points 0 
and P, inverts into a pair of intersecting lines through the inverse point 
P; and that a pair of tangent circles, touching at 0, inverts into a pair 
of parallel lines. 

There is actually an instrument, dot much more complicated than the 
compasses we use for drawing circles, which enables us to draw the inverse 
of any given locus. This linkage, discovered by L. Lipkin in 1781, was re- 
discovered by A. Peaucellier nearly ninety years later, and became known 
as Peaucellier's inversor, or Peaucellier's ce1l.t I t  consists of six rods or 
links: two of length a joining a fixed point 0 to two opposite comers Q 
and R of a rhombus PQP'R of side b (less than a ), with hinges a t  

t For other constructions and theory on linkages, see e.g. A. B. Kempe, How lo 
Draw a Straight Linc, pp. 1-51 (contained in Sqtraring a Circle by Hobson et al, Chelsea, 
New York, 1953); for deeper study, see I. I. Artobolevskil, Mechanisms o j  Ikc Genera- 
riorr of Plane Curves, Pergamon Press, 1964, or E. H. Lockwood [ZO]. 
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all four comers. (See Figure 5.3C.) When a pencil point is inserted at P' 
and a tracing point at  P (or vice versa) and the latter is traced over a 
given locus, the pencil draws the inverse locus. For, if X is the center of 
the rhombus, 

O P X O P '  = ( O X - P X ) ( O X + P X )  = O F - P P  

= O P + R X P -  R P -  P P  = O R -  PR 

which is constant. Of course, the physical structure restricts the loci to the 
ring-shaped region between the circles with center 0 and radii a f b. 

Figure 5.3C Figure 5.3D 

In particular, if a seventh link SP joins P to a fixed point S whose 
distance from 0 is equal to the length of this link, P is constrained to 
move on a circle through 0 and consequently P' dexribes a straight 
line or, more precisely, a segment. Thus Peaucellier's cell solves the old 
problem of constructing a line without using a straightedge (whose 
straightness depends theoretically on the previous construction of a line). 

The inverse of a triangle is usually a queer figure formed by arcs of 
three circles through 0. Suppose, however, we restrict our attention to 
the vertices A, B, C of the triangle. If these invert into A', B', C', as 
in Figure 5.3D, there are some interesting relations between 0, AABC, 
and AA'B'C'. For simplicity, we suppose 0 to lie inside AABC. 
Since 

OA X OA' = k2 = OB X OB', 

AOA'B' - AOBA, and the angles marked 1 are equal. The same is 
true of the angles marked 2. I t  follows easily that L BOC is equal to the 
sum of the angles at  A and A' in AABC and AA'B'C'. For, since 

L BOC = L 1 + L A'B'O + L2 + L A'C'O, 

and since 

LA'B'O = LBAO, LA'C'O = LCAO, 

we have 
LBOC = L 1 +  L 2 +  LBAO+ LCAO = LB1A'C'+ LBAC. 
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Similarly 
LCOA = L B +  LB'. 

Hence, given AABC, we can adjust the position of 0 so as to obtain 
a triangle A'B'C' with any chosen angles A' and B'. Having found 
0, we can vary k and thus vary the size of AA 'B'C' (see Exercise 6). 
Easy adjustments can be made if 0 is not inside AABC; i t  is even 
possible for A, B, C to be collinear. Hence 

THEOREM 5.31. For a suitable circk of inversion, any three distinct 
poi& A, B, C can be inverted into the verlices of a triangle A'B'C' 
congruent to a given triangle. 

EXERCISES 

1. Construct the inverse of a square circumscribed about the circle of 
inversion. 

2. For what positions of 0 will the sides of a given triangle invert into 
three congruent circles? 

3. Given the circle w with center 0 and any point P distinct from 0, 
construct the inverse of P using compasses only (no straightedge),t 

(i) when OP > k/2, 

k k 
(ii) when - < OP S 2 ( n  - l )  . 2n C4, P. 144.1 

4. How are AABC and Ad'B'C' related if 0 is (i) the circumcenter, 
(ii) the orthocenter, (iii) the incenter, of AABC? 

5. Find coordinates for the inverse of the point (z, y) in the circle 

2+jt  = Kf. 

6. Given triangles ABC and DEF, sketch a construction for finding the 
center 0 and the radius k of the circle of inversion such that the inverses 
A', B', C' of A, B, C form a triangle congruent to ADEF. 

t It can be shown by inversion that all constructions with straightedge and com- 
passes can be done with compasses alone; see [4, pp. 140-1523, and H. P. Hudson, 
Ruler and Compasses, pp. 131-143 (contained in the aforementioned book Squaring a 
Circle). 
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5.4 The inversive plane 

We have seen that any circle through 0 (with 0 itself omitted) in- 
verts into a line, and that any circle with center 0 inverts into a circle. 
I t  is natural to ask what happens to a circle in other positions. As a 
first step in this direction, we proceed to find how inversion affects the 
distance between two points. 

THEOREM 5.41. If a circle with center 0 and radius k inverts a point 
pair AB into A'B', the distances are related by the equation 

A'B' = 
k2AB 

OA x OB' 

For, since AOAB - AOB'A' (Figure 5.4A), we have 

A'B' OA' OA X OA' = =  - - k2 
AB OB OA X OB OA X OB' 

From this we can easily deduce the preservation of cross ratio:t 

THEOREM 5.42. If A, B, C, D invert into A', B', C', D, then 

( A'B', C'D') = ( AB, CD). 

In fact, 
k2AC WBD 

( A'B', C'D') = 
A'C'XB'D - O A X O C  O B X O D  - 
A'D' X B'C' k2AD k2BC 

OA X OD OB X OC 

- - AC X BD 
= (AB, CD). 

AD X BC 

This, in turn, yields the preservation of separation: 

THEOREM 5.43. If A, B, C, D invert into A', B', C', D' and 
AC//BD, then AIC'//B'D'. 

For, with the help of Theorems 5.21 and 5.42, we find that the relation 
A C // BD implies 

whence A'C' // B'D'. 

t J. Casey, A Sequel lo !kc Firsl Six Books o j  the Elemenls of Euclid (6th ed.) ,  Hodges 
Figgis, Dublin, 1892, p. 100. 
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Figure 5.4A 

At the end of Section 5.2 (page 107), we saw that any given circle can 
be described, in terms of three of its points, as consisting of A, B, C and 
all points X satisfying BC // AX or CA J /  BX or AB // CX. Hence 
the inverse of the given circle consists of A', B', C' and all points X' 
satisfying B'C' // A'X' or C'A' // B'X' or A'B' // C'X'; that is, the 
inverse is the circle (or line) A'B'C'. As we saw in Section 5.3 (page 109) 
the inverse is a line if and only if the given circle passes through 0. 
This completes the proof of 

THEOREM 5.44. The inverse of any circle not passing through 0 is a 
circk not passing through 0. 

The description of a circle (or line) in terms of separation suggests 
that it may be useful to modify our terminology so as to let the word 
circk include line as a special case, that is, to regard a line as a circle of 
infinite radius. At the same time, we agree to add to the Euclidean plane 
a single point at infinity P,, which is the inverse of the center of any 
circle of inversion. The plane, so completed, is called the inversive plane. 
Since a circle with center 0 inverts any circle through 0 into a line, 
we regard a line as a circle through P,. Since two circles tangent to each 
other a t  0 invert into parallel lines, we regard parallel lines as circles 
tangent to each other a t  P,. With this convention, we can combine 
Theorem 5.44 with the results of Section 5.3 so as to obtain, for the 
inversive plane, 

THEOREM 5.45. The inverse o j  any circle is a circle. 

The addition of P, to the Euclidean plane enables us to declare that 
inversion is a one-to-one transformation of the whole inversive plane: 
every point (without exception) has an inverse, and every point is the 
inverse of some point. 

Two circles are said to be intersecting, tangent or nm-intersecting 
according as their number of common points is 2, 1, or 0. Hence a pair 
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of circles of any one of these three types inverts into a pair of the same 
type (including, among pairs of "tangent circles", one circle and a 
tangent line, as well as two parallel lines). 

EXERCISES 

1. Let A be any point outside a circle w, A' its inverse, and P a variable 
point on w; then the ratio PAIPA' is constant. Conversely, if B 
and C divide a given line segment AA' internally and externally in 
a given ratio (diierent from 1, as'in Exercise 2(i) of Section 5.2), the 
circle on BC as diameter is the locus of points whose distances from 
A and A' are in this ratio. (The locus is called the circle of ApoUoniw.) 

2. Let any point on a circle w be joined to the ends of a diameter by lines 
meeting the perpendicular diameter a t  P and P'. Then P' is the 
inverse of P .  

3. Through any two points inside a circle, just two circles can be drawn 
tangent to the given circle. 

4. With any three distinct points as centers, let three circles, tangent to one 
another a t  three distinct points, be drawn. (The points do not necessarily 
form a triangle; they may be collinear.) Then there are exactly two circles 
tangent to all the three circles. These two circles are nonintersecting. 
(They are sometimes called Soddy's circles [6, pp. 13-16] although they 
were described by Steiner as long ago as 1826 in the first volume of Crelle's 
Journalfur Mathemutik, p. 274.) 

5. Give a quick proof for Theorem 5.12, using inversion [23, pp. 10-111. 

6. The inverse, in a circle w with center 0, of a circle a through 0, is 
the radical axis (see page 34) of w and a. 

7. When a line is regarded as a special case of a circle, is a pair of lines 
through one point a pair of tangent circles or a pair of intersecting circles? 
Explain your answer in terms of the number of points common to the 
two lines. 

5.5 Orthogonality 

From the preservation of circles i t  is a small step to the preservation 
of angles. The two supplementary angles between two intersecting circles 
are naturally defined as the angles between their tangents a t  a point of 
intersection. By reflection in the line of centers, i t  is clear that the angles 
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are the same at both points of intersection. To see how angles are affected 
by inversion in a circle with center 0, let 8 be one of the angles be- 
tween two lines a and b through a point P, as in Figure 5.5A. We saw, 
in the discussion of Figure 5.3B (page log), that the line a inverts into 
a circle a through 0 whose tangent a t  0 is parallel to a. Similarly, 
b inverts into a circle 8 through 0 whose tangent there is parallel to b. 
Since 8 is one of the angles between these tangents a t  0, it is one of the 
angles of intersection of a and 8. But these circles intersect not only at 
0 but also a t  P', the inverse of P. Hence the same angle t9 appears 
at P' 

The reader can easily see what changes are needed if a or b happens 
to pass through 0. (If both lines pass through 0, they invert into 
themselves, and the invariance of 8 is immediately clear.) 

Figure 5.5A 

For any two circles through P, we can let a and b be their tangents 
a t  P. The inverse circles touch a and 8 (respectively) a t  P'. Hence 

THEOREM 5.51. If two circles intersect at an angle 8, their inz~erses in- 
tersect at the same angle 8. 

Two circles are said to be orthogonal if they intersect (twice) a t  right 
angles, so that, a t  either point of intersection, the tangent to each is a 
diameter of the other. As a special case of Theorem 5.51 we have 

THEOREM 5.52. Orthogml circles invert into orthogml circles. 

Replacing the P of Figure 2.1B (on page 28) by 0 ,  we can regard 
the circle in that figure as any circle through the two inverse points 
A and A'. Then, since 

k2 = OA X OA' = OB X OB' = O F ,  

any other secant BB' through 0 provides another pair of inverse points, 
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B and B'; and either of the tangents from 0 has for its point of con- 
tact, T, a self-inverse point, that is, a point on the circle of inversion w. 
Hence 

THEOREM 5.53. A n y  circle through two distinct points, inverses of each 
other in w, i s  its own inverse, and i s  orlhogonal to w. 

Conversely, every circle orthogonal to w i s  i ts own inverse. For, if i t  
intersects w a t  T, and A is any other point on it, the line O A  meets 
i t  again a t  A' such that 

O A  X OA' = O F  = k2. 

Moreover, i j  two circles orthogonal to w intersect, their common points are 
a n  inverse pair. For, if A is one of these points, the line O A  meets each 
circle again a t  the inverse of A .  

These remarks enable us to redefine inversion in terms of orthogonality, 
so that we have, in fact, an "inversive" definition for inversion: 

A n y  point on w i s  i ts own inverse; the inverse o j  any olher point P i s  
the second intersection o j  any two circles through P orthogonal to w. 

Replacing w by a line, we deduce that reflection in a line may properly 
be regarded as a special case of inversion in a circle. 

Figure 5.5B 

I t  follows from the inversive definition of inversion that a circle 
a and two inverse points (inverse in a ) invert (in w ) into a circle a' 
and two inverse points (inverse in a' ). We can now combine inversive 
and Euclidean ideas in such a way as to discover how inversion affects 
the center, A ,  of a. We might a t  first expect A to invert into the 
center of a'; but that would be too simple! ( I t  does not even happen 
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when a coincides with w . )  In fact, a, and the two inverse (in a ) 
points A and P, invert (in w ) into a' and the two inverse (in a' ) 
points A' and 0. Thus A' (the inverse of A in w ) is not the center 
of a' but the inverse (in a' ) of 0. (See Figure 5.5B.) 

EXERCISES 

1. Given a circle w and an outside point A ,  construct the circle with 
center A orthogonal to w. 

2. Given a circle w and two non-inverse points P and Q, construct the 
circle through P and Q orthogonal to w. 

3. Given a point P and two circles wl and 02 not passing through P, 
construct the circle through P orthogonal to both a and 02. 

4. If w (with center 0 and radius k) inverts a circle a into a', what is 
the relation between the powers of 0 with respect to a and a'? 

5. For any circle a and point P on a and point 0 not on a, there is a 
unique circle through 0 touching a at P. (See Figure 5.5C.) 

Figure 5.5C 

5.6 Feuerbach's theorem 

In Section 1.8 we briefly mentioned Feuerbach's theorem, to which 
inversion can usefully be applied in a t  least three ways. For one way, 
see Pedoe [23, pp. 9-10]. Before giving another [24, pp. 76771, let us 
enunciate Feuerbach's theorem again, as follows: 

THEOREM 5.61. The nine-point circle of a triangle is tangent to the in- 
circle and to the three excircles. 
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Figure 5.6A shows triangle ABC with its medial triangle A'B'C', its 
incircle (with center I )  touching BC at  X, its first excircle (with 
center I.) touching BC at  X., and the remaining common tangent 
B1Cl of these two circles (which both touch the three sides of AABC ). 
We see also the circle o on XX. as diameter, and the points S, B", C" 
in which B1Cl meets BC, A'B', A'C'. Since o is orthogonal to the 
incircle and the first excircle, inversion in w leaves both these circles 
invariant. We proceed to prove that w inverts the nine-point circle 
A'B'C' into the lime BICI. 

Figure 5.6A 

By Theorem 1.41 (page 11) and the subsequent remarks, we have, in 
terms of s = (a + b + c)/2, 

whence the center of w is A', the midpoint of BC, and the diameter 
of o is 

XX, = a - 2(s - b) = b - G 

(which we are assuming to be positive; otherwise, rename A, B, C in 
a different order). The nine-point circle passes through the center A' 
of w ;  hence o inverts it into a straight line. We shall show that this 
line goes through B" and C" (and therefore through B1 and C1) by 
showing that B" and C" are the inverses in w of points B' and C' 
on the nine-point circle. 

Since S (like I and I.) lies on the bisector of the angle A, Theo- 
rem 1.33 (page 9) shows that S divides the segment CB (of length 
a ) in the ratio b : G, SO that we have 
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and the half-difference of these two lengths is 

a(b - c) 
SA' = 

2(b + c) ' 

Also BCl = ACl - AB = AC - AB = b - c, and similarly 
CB1 4 b - 6. 

Since ASA'B" - ASBCl and ASA'C" - ASCB1, we have 

AfBU SA' b - c  = = -  
b - BCl SB 2c 

and 

A'C" A'C" SA' b - c - = - = - = -  
b- CB1 SC 2b ' 

and 

Thus w, whose radius is (6 - c)/2, inverts B' into B", and C' into 
C", as desired. 

In fact, w inverts the inclrcle and the first excircle into themselves, 
and their common tangent B1Cl into the nine-point circle. Hence the 
nine-point circle, l i e  the line, touches them both, and similarly touches 
the remaining two excircles. 

Incidentally, the nine-point circle is determined by the points D, E,  F, 
which are the intersections of pairs of opposite sides of the orthocentric 
quadrangle ABCH (see the end of Section 2.4 on page 39). In other 
words, the four triangles ABC, BCH, CAB, ABH all have the same 
nine-point circle. However, each of these triangles has its own set of 
four tritangent circles. Thus the orthocentric quadrangle determines a 
set of sirtern circles, all tangent to the circle DEF. 

EXERCISES 

1. In Figure 5.6A, the line BICt cuts BC at an angle B - C. 

2. The circle w inverts S into D (the foot of the altitude from A to BC) . 
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5.7 Coaxal circles 

In  Section 2.3 (page 35) we saw that any two non-concentric circles, 
a and 8, belon$ to a "pencil" 4 of coaxd circles, such that the radical 
axis of a and 8 is also the radical axis of any two circles belonging to 
the pencil. Any point P on the radical axis has equal powers with respect 
to all the circles in the pencil. Whenever this power is positive, its square 
root is the length of the tangents from P to any of the circles, and these 
tangents serve as radii of circles with center P, orthogonal to all the 
circles. Any two such circles, say y and 6 (orthogonal to every circle in 
the pencil 4 ) , belong to a complementary pencil 76, such that every 
circle in either pencil is orthogonal to every circle in the other. Each 
pencil has, for one of its members, a line, which serves as the radical 
axis of that pencil and the line of centers of the other, and of course 
these two lines are perpendicular. If we use them as coordinate axes, as 
in Section 2.3, the circles can be expressed as 

x t + y 2 - 2 a x + c  = 0 and a ? + + -  2by-c = 0, 

where c is fixed while a and b vary. If c > 0, the first pencil consists 
of nm-intersecting circles, as in Figure 2.3A, and the second consists of 
intersecting circles, all passing through the limiting points (f $, O), 
which may be regarded as degenerate members 

( x -  & ) 2 + y t  = 0 and ( ~ + G ) ~ + y t  = 0 

of the first pencil. If c < 0, we have the same arrangement turned 
through a right angle about the origin: the first pencil is intersecting 
and the second non-intersecting. Finally, if c = 0, we have two orthog- 
onal pencils of tangent circles, all touching one of the axes a t  the origin. 

The members of a non-intersecting pencil of coaxal circles occur in a 
natural order determined by the order of the points in which they meet 
the line segment joining the limiting points. This natural ordering enables 
us to say precisely which one of three members lies "between" the other 
two. 

We may describe the pencil 4 "inversively" as consisting of all the 
circles orthogonal to y and 6, and the pencil y6 as consisting of all 
the circles orthogonal to a and 8. In  other words, a0 consists of all 
the circles orthogonal to any two distinct circles orthogonal to a and 8. 

If 0 and P are the common points of two intersecting circles y 
and 6, inversion in any circle with center 0 yields two lines through P', 
the inverse of P. The circles orthogonal to these lines are a "pencilJ' 
of concentric circles with center P', and the pencil y6 inverts into the 
diameters of these concentric circles. The same figure can be derived 
from any two non-intersecting circles a and 8. For, we can easily find 
(Figure 5.7A) two intersecting circles, y and 6, orthogonal to both a 
and 8, namely, two circles of suitable radii whose centers lie on the 
radical axis of a and 8. Hence 
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THEOREM 5.71. Any two nm-intersecting circles can be inverted into 
cmentru circles. 

For this purpose, the circle of inversion may be any circle whose center 
is either of the limiting points 0 and P of the non-intersecting pencil 
4. If a precedes 8 in the natural order from 0 to P, any circle 
with center 0 (or P ) will invert a into the larger (or smaller) of the 
concentric circles. By changing the radius of the circle of inversion without 
moving its center, we replace the pair of concentric circles by another 
pair whose radii are in the same ratio; for, the new inversion is equivalent 
to the old inversion followed by a suitable dilatation. By inverting in a 
circle with center P instead of 0, we replace the pair of concentric 
circles by another pair whose radii are in the reciprocal ratio. 

Figure 5.7A 

If a and w are any two distinct circles, the inverse of a in w belongs 
to the pencil aw. For, any two circles orthogonal to both a and w 
invert into themselves. If a inverts into 8, we call w a mid-circle of 
a and 8. (This seems more natural then the classical name "circle of 
antisimilitude".) Since 8 belongs to the pencil aw, w belongs to the 
pencil 4. We are now ready to prove the converse of Theorem 5.45: 

THEOREM 5.72. Any two circles have at least one mid-circle. Two m- 
intersecting m tangent circles have just one mid-circle. Two intersecting 
circles have two mid-circles, mthogonal to each other. 
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If a and /3 intersect, we can invert them into intersecting lines, which 
are transformed into each other by reflection in either of their angle- 
bisectors. Inverting back again, we see that the intersecting circles a and 
/3 have Cwo mid-circles, orthogonal to each other and bisecting the angles 
between a and 8. 

If a and /3 are tangent, we can invert them into parallel lines. There- 
fore such circles have a unique mid-circle. 

If a and /3 are non-intersecting, we can invert them into concentric 
circles, of radii (say) a and b. These concentric circles are transformed 
into each other by inversion in a concentric circle whose radius is the 
geometric mean @. Inverting back again, we see that the non- 
intersecting circles a and @ have ( l i e  tangent circles) a unique mid- 
circle. If a and @ are congruent, their mid-circle coincides with their 
radical axis. 

EXERCISES 

1. What equation must c and c' satisfy if the two circles 

g + f - 2 a z + c = 0  and 1 ? + 9 - 2 b ~ + c ' = O  

are orthogonal? 

2. The radius of the mid-circle of two tangent circles (on the same side 
of their common tangent) is the harmonic mean of the radii of the two 
given circles. 

3. What happens when two orthogonal pencils of tangent circles are inverted 
in a circle whose center is their common point? 

4. Any two circles can be inverted into congruent circles. 

5. For any two congruent circles, their radical axis is a mid-circle. 

6. Any four distinct points A, B, C, D can be inverted into the vertices 
of a parallelogram A'B'C'D' (including, as one possibility, a degen- 
erate parallelogram in which the four vertices lie on one line, but 
still A'B' = D'C and A'D' = 8'6 ). Hint: Consider separately 
the three cases (i) AC//BD, (ii) AB//CD or AD//BC, (iii) A, 
B, C, D are not concyclic. 

7. Construct the mid-circle of two given non-intersecting circles (of dii- 
ferent sizes). Hint: Assume that everyone knows (with the help of 
Section 5.5, Exercise 3) how to locate the limiting points of the coaxal 
pencil 43, where a and @ are two non-intersecting circles (with dii- 
ferent centers). 
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5.8 Inversive distance 

Since angle-bisectors invert into angle-bisectors, either mid-circle of 
two intcrsctting circles bisects one of the angks between the circles. 
Accordingly, it is reasonable to ask whether two non-inkrsecting circles 
determine in some similar manner a numerical property that is bisected 
by their unique mid-circle. This inquiry almost forces us to invent, for 
any two non-intersecting circles a and 8, an inversive distance (a, 8) 
such that, if y belongs to the non-intersecting pencil a@ and if B lies 
between a and y, then 

(5.81) (a, B) + (B, 7) = (a, 7). 

Inverting in a circle whose center is one of the limiting points, we 
obtain three concentric circles whose radii a,  b, c satisfy either 
a > b > c or a < b < c and, of course, 

Noting that by taking logarithms we can transform multiplication into 
addition, we define 

that is, log (a /b)  or log (b /a )  according as a > b or a < b. The 
equation (5.81) is clearly satisfied for these concentric circles. 

I t  would be possible to interpret the above sign "log" as meaning 
"logarithm to base ten", so that the relation z = log y would mean 
y = 1W. However, the custom of using base ten arises from the non- 
mathematical observation that most people have ten fingers (including 
thumbs). I t  is more mathematically significant to replace this ten by the 
transcendental number 

so that the relation z = log y (sometimes written In y with n for 
"natural") means 

and the natural logarithmt itself is given by the equally remarkable series 

t See [26, p. 32 ff.1. 
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Let us agree to define the inversive distance between any two non- 
intersecting circles to be the natural logarithm of the ratio of the radii 
(the larger over the smaller) of two concentric circles into which the givm 
circles can be inverted. 

Since concentric circles invert into coaxal circles, this kind of "distance" 
is additive, in the sense of (5.81), for members of a coaxal pencil. In  
particular, the mid-circle of any two nm-intersecting circles bisects the in- 
versive distance between them. By regarding two parallel lines as a limiting 
case of two concentric circles, we see that two tangent circles may 
properly be considered as having inversive distance zero. 

Figure 5 8A 

If we have two (non-concentric) circles, one inside the other, and other 
circles are drawn, touching one another successively and all touching 
the two original circles, as in Figure 5.8A, it may happen that the sequence 
of tangent circles closes so as to form a ring of n, the last touching the 
first. In  this case, we can take the first circle of the ring to be any circle 
touching both the original circles, and the ring will still close with the 
same value of n. Theorem 5.71 provides a remarkably simple proof of 
this result, known as Steiner's porism [13, p. 53). We merely have to 
invert the original circles into concentric circles, and then the others 
become a ring of congruent circles whose centers form a regular n-gon, 
as in Figure 5.8B. Here A is one of the centers, T the point of contact 
of this circle with one of its neighbors in. the ring, and 0 the common 
center of the two concentric circles: the outer one of radius a,  and the 
inner one of radius b. AOA T  is a right-angled triangle with 

OA = (a + b)/2, A T  = (a - b)/2 

and angle r /n  radians a t  0. [8, p. 3.1 Since these concentric circles 
have radii a and b, their inversive distance b = log (a/b) satisfies 

. r A T  a - b  ( a /b ) -1  8 - 1  a n -  = - = - = = -  
n O A  a + b  (a/b) + 1  @ + I '  
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I t  follows that Steiner's porism holds whenever the inversive distance 
between his two original circles satisfies the same equation 

. * 8 - 1  sin - = - 
n 6 + 1 '  

Solving for t? and then for 6 itself, we find 

1 + sin (*/n) 1 + sin (r/n) 
6 = 

1 - sin (*/n) 
) r (see * + tan I): 

cos (+) n n 

I n  particular, we see by setting n = 4 that any two circles whose 
inversive distance is 

2 log ( a  + 1) 

belong to a "configuration" of six circles, each touching four others. The 
six circles fall into three pairs of "opposites", such that every circle 
touches all the others except its own opposite. The inversive distance 
between any two opposite circles is 2 log ( a  + I ) ,  and of course the 
remaining twelve distances are zero. 

Steiner's porism is still valid if the chain of circles closes after d revo- 
lutions instead of one. In  the formulae we merely have to replace n by 
the fraction n/d. 

Figure 5.8B 

Since a circle may have any radius, and since its center is determined 
by two coordinates, the set of all circles in the Euclidean plane (and 
also in the inversive plane) is a three-parameter family, or threefold 
infinity. By interpreting the threefold infinity of circles in the inversive 
plane as the planes of a three-dimensional space, we could obtain the 
famous "non-Euclidean" geometry which was discovered independently 
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(between 1820 and 1830) by Gauss, Bolyai and Lobachevsky. The angles 
between two intersecting circles.appear as the angles between two planes 
that intersect in a line; two tangent circles appear as two 'Lparallel" 
planes; and the inversive distance between two non-intersecting circles 
appears as the distance between two "ultraparallel" planes which have 
a common perpendicular line, the distance being measured along this 
line. t 

EXERCISES 

1. In Steiner's porism, the points of contact of adjacent circles in the ring 
lie on the mid-circle of the two original circles. (In fact, the mid-circle 
or mid-circles of any two circles a and @ can be described as the locus 
of points P such that two circles, tangent to both a and @, are tangent 
to each other at P.) 

2. Equation (5.83) is equivalent to 

3. Draw three congruent circles all touching one another, and a second set 
of three such circles, each touching also two of the first set. What are 
the inversive distances among these six circles? 

5.9 Hyperbolic functions 

In  the present section we shall observe a fascinating analogy between 
the trigonometric functions of the angles between pairs of intersecting 
circles and the so-called hyperbolic$, functions of the inversive distances 
between pairs of non-intersecting circles. The hyperbolic sine, hyperbolic 
cosine and hyperbolic tangmt are defined, in terms of the exponential 
function 6, by the formulae 

e= - c= e= + e-= C-e-= 
sinh x = - 

2 ' 
cosh z = - 

2 '  
tanhx = - e=+ e-r' 

which are easily seen to imply 

cosh x + sinh x = c, cosh x - sinh x = eZ. 

t See Coxeter, Non-Euclidean C~ometry (5th ed., Toronto, 1965), pp. 265-266. 
$ Why "hyperbolic"? See [6, p. 1241, [26, p. 221. The non-Euclidean geometry of 

Gauss, Bolyai and Lobachevsky is called hyperbolic gwmdry, and a nice justification 
for this can be seen in the article "Non-Euclidean Geometry" in The MathnndiccJ 
S k w ,  A CoUeclion of Essays (M.I.T. Press, 1969). 
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Some other consequent identities are shown on the left of the following 
table; the column on the right gives the analogous trigonometric iden- 
tities. 

sinh 0 = 0, cosh 0 = 1 I sin 0 = 0, cos 0 = 1 

coshz x  - sinhZ x  = 1 
sinh x  - =  tanh x  
cosh x  

tanh 0 = 0, tanh a = 1 

x  cosh x  - 1 
sinhz- = 

2 2 

a 
tan 0 = 0, tan - = 1 

4 

z cosh x  + 1 
coshz- = 

2 2 

sin x  
tan x  

x  1 - cos x  sins - = 
2 2 

x  1 + cos x  1 c0s25 = 
2 

x  cosh x  - 1 x  1 - cos x  
tanh - = 

2 
1 t a n 5  = 

sinh x  sin x  

In  this notation, (5.83) can be expressed as 

6 a 6 a 6 a 
tanh - = sin - or sinh - = tan - or cash - = set -. 

2 n 2 n 2 n 

I t  is, perhaps, not too fanciful to compare the role of the hyperbolic 
functions in mathematics with the role of the ammonium radical NH4 
in chemistry.t This radical behaves like an atom of sodium or potassium 
although it can be analyzed into atoms of nitrogen and hydrogen. Some- 
what analogously, the hyberbolic functions behave like trigonometric 
functions although they can be expressed in terms of exponentials. ( I t  
must be admitted that this excursion into chemistry will have less 
appeal for any reader who, having studied functions of a complex 
variable, understands the meaning of the formulae cos x  = cosh i x ,  
i sin x  = sinh i x . )  

Returning to our discussion of angles and distances between pairs 
of circles, let us consider two circles of radii a and b such that the 
(ordinary) distance between their centers is c. If each of a,  b, c is 
less than the sum of the other two, the circles intersect at two points, 
either of which forms with the two centers a triangle whose sides are 
a, b, c. One of the two supplementary angles of intersection, being 

t A. E. H. Tutton, Crystals (Kegan Paul, London, 1911), p. 82. 
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equal to the angle between the first and second sides, has the familiar 
expression 

for its cosine. 

Figure 5.9A Figure 5.9B 

Let us see whether we can find a geometrical meaning for the same 
expression 

when one of a, b, c is greater than the sum of the other two, so that 
the circles are non-intersecting. For instance, they might be two con- 
centric circles (so that c = 0 ) whose diameters A A' and BB' satisfy 
AB' // A'B on one line, as in Figure 5.9A. In  terms of the inversive 
distance 

6 = log (a/b), 
we find the cross ratio 

AB X A'B' a - b  8 - 1  
(AA', BB') = 

AB' X A'B A B' 

If these circles arise by inversion from two non-intersecting circles whose 
centers are a t  (ordinary) distance c, it is convenient to use the same 
letters a and b for the radii of the latter circles, and A, A', B, B' 
for the points where they cut their line of centers (with AB' // A'B, as 
before). By Theorems 5.42 and 5.43 (page 112), cross ratio and separa- 
tion are invariant. Thus we still have 

cosh 6 - 1 
{AA', BB') = 

cosh 6 + 1 ' 
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although now we must express this cross ratio (and hence 6 ) in terms of 
the new a and b along with c. If a - b > c, as in.Figure 5.9B, we 
have 

ABXA'B'  ( a + c - b ) ( a - c - b )  
(AA', BB') = - - 

AB' X A'B ( a  + c + b)  ( a  - c + b)  

whence cosh 6 = 7. Similarly, if a + b < c, as in Figure 5.9C, 

ABXA'B'  ( c - a - b ) ( c + a + b )  
( A  A', BB') = - - 

AB' X A'B ( c  - a + b)  ( c  + a - b)  

whence cosh 6 = -7. Collecting these results, we see that we have 
proved 

THEOREM 5.91. If c i s  the (ordinary) distance between the centers of 
two non-intersecting circles of radii a and b, the inversive distance 6 be- 
tween the circles i s  given by t  

cosh 6 = Ia2+L- c 2 1 .  

Figure 5.9C 

t The graph of the function y = cosh z is the familiar calcnary: the shape of a 
hanging chain supported at both ends [6, pp. 317-3191. 
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As an interesting application of this theorem, let us consider two circles 
so placed that there is a quadrangle whose vertices lie on the one of 
radius a while its sides touch the one of radius b. It is knownt that 
the (ordinary) distance c between the centers of two such circles 
satisfies the equation 

which can be expressed in the form 

I a l + b f -  ell = b d m -  
or 

Since coshl 6 = 1 + sinhl 6, i t  follows that the inversive distance be- 
tween circles having an inscribed-circumscribed quadrangle is expressible 
in terms of their radii by the simple formula 

EXERCISES 

1. If the (ordinary) distance between the centers of two circles of radius 1 is 
2 (a + I ) ,  another unit circle lying midway between them bisects their 
inversive distance. Is  this their mid-circle? 

2. The inversive distance 6 between Soddy's circles (Exercise 4 of Section 
5.4) is given by 

3. If two circles are outside each other, so that they have four common 
tangents, the ratio of the lengths of the shorter and longer common 
tangents is tanh (6/2), where 6 is the inversive distance between the 
two circles. 

4. Consider a line a t  distance p from the center of a circle of radius b. 
If p < b, the line and the circle intersect at  an angle 6 given by 

t [I?, pp. 91-95.] According to J .  L. Coolidge, A Trcatise on thc Circk and thc Spirac 
(Oxford, 1916), pp. 45-46, it was Euler who discovered this as well as the analogous 
formula 1/(R - d )  + 1/(R + d )  = l / r  for a triangle (our Theorem 2.12 on p. 29). 
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cos 6 = f p/b. If p 2 b, their inversive distance 6 is given by 
cosh 6 = p/b. 

5. For a triangle with circumradius R and inradius r, the drcumcircle 
and incircle are a t  inversive distance 6, where 

Hint: Use Theorem 2.12. 

6. Consider the circumcircle and nine-point circle of triangle ABC. If the 
triangle is obtuse, these circles intersect a t  an angle 6 given by 

&a - = -cos A cos B cos C. 
2 

If the triangle is right or acute, their inversive distance 6 is given by 

6 
sinh2 - = cos A cos B cos C. 

2 

7. The inversive distance between the two circles 

a?+y ' -2az+@ = 0 ( a >  d >  0) 
and 

# + y ' - 2 b z + @ =  0 ( b >  d >  0) 

is 1 a - /3 I, where 

d  d  
tanha==- and tanh/3=- 

a b ' 



C H A P T E R  6 

An Introduction to Projective 
Geometry 

Since you are now studying geometry and trigonometry, I 
will give you a problem. A ship sails the ocean. I t  left Boston 
with a cargo of wool. I t  grosses 200 tons. I t  is bound for Le 
Havre.. . .There are 12 passengers aboard. The wind is 
blowing East-North-East. The clock points to a quarter past 
three in the afternoon. I t  is the month of May. How old is 
the captain? 

Gicstaw Flaubcrl 

All the transformations so far considered have taken points into points. 
The most characteristic feature of the "projective" plane is the principle 
of duality, which enables us to transform points into lines and lines into 
points. One such transformation, somewhat resembling inversion, is 
"reciprocation" with respect to a fixed circle. Every point except the 
center 0 is reciprocated into a line, every line not through 0 is recipro- 
cated into a point, and every circle is reciprocated into a "conic" having 
0 for a "focus". After some discussion of the various kinds of conic, we 
shall close the chapter with a careful comparison of inversive geometry 
and projective geometry. 

6.1 Reciprocation 

For this variant of inversion, we use (as in Section 5.3, page 108) a 
circle w with center 0 and radius k. Each point P (different from 0) 

132 
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determines a corresponding line p, called the polar of P ;  i t  is the line 
perpendicular to O P  through the inverse of P (see Figure 6.1A). Con- 
versely, each line p (not through 0 ) determines a corresponding point 
P, called the pole of p; it is the inverse of the foot of the perpendicular 
from 0 to p. Interchanging P and P' in Figure 5.3A, we see that, 
when P is outside w, its polar joins the points of contact of the two 
tangents from P. Still more obviously, when P lies on w, its polar is 
the tangent a t  P, and this is the only case in which P and p are inci- 
dent ( P  on p, and p through P ). We shall find it  helpful to adopt a 
consistent notation, so that the polars of points A, B, are lines 
a, b, , and the pole of any line is denoted by the corresponding capi- 
tal letter. 

Figure 6.1A 

For any point A (except 0 ), let A' denote its inverse and a its 
polar, as in Figure 6.1B. For any point B on a, draw AB' perpen- 
dicular to OB. Then AOAB1- AOBA', and 

OB X OB' = OA X OA' = k2. 

Hence B' is the inverse of B, and AB' is b, the polar of B. Con- 
versely, any line b through A (except the line OA ) yields a perpen- 
dicular line OB which enables us to reconstruct the same figure. We have 
thus proved: 

THEOREM 6.11. If B lies on a, then b pmses through A. 

By keeping A and a fixed while allowing B and b to vary, we deduce 
that the polars of all the points on a line a (not through 0 ) are lines 
through its pole A. In other words, the polars of a set of collinear points 
are a set of concurrent lines. This incidence-preserving process, in which 
points and lines are transformed into their polars and poles, is called 
reciprocation. I t  leads naturally to the principle of duality which states 
that, for any configuration of points and lines, with certain points lying 
on certain lines, there is a dual configuration of lines and points, with 
certain lines passing through certain points. For instance, the dual of a 
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complete quadrangle ABCD (consisting of four points, no three col- 
linear, and their six joining lines AD, BD, CD, BC, CA, AB)  is a 
complete quadrilateral d c d  (consisting of four lines, no three concur- 
rent, and their six points of intersection a-d, bed, c-d, b*c, c-a, a-b ). 

Figure 6.1B 

A circle can be regarded either as a locus of points or as an envelope 
of lines (tangents). (See Figure 6.1C.) Each tangent is the limiting 
position of a secant when the two "endpoints" of the secant approach 
coincidence. Dually, each point of contact is the limiting position of the 
point of intersection of two tangents when these approach coincidence. 
Thus reciprocation interchanges loci and envelopes. The circle w,  re- 
garded as a locus or an envelope, reciprocates into the same circle in the 
opposite aspect. Similarly, a circle with center 0 and radius r recipro- 
cates (with the same change of aspect) into a concentric circle of radius 
k2/r. 

. . *  . . . . . . . . . . . 
* .  . 
l o c u s  

envelope 

Figure 6.1C 
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When two points and two lines are related in the manner of Theorem 
6.11 (so that one lies on the polar of the other), we call A and B con- 
jugate points, a and b conjugate lines. Thus the polar of A is the locus 
of points conjugate to A, and the pole of a is the envelope of lines con- 
jugate to a. (By making the radius of a circle tend to zero, we can justify 
the notion that a point is the "envelope" of the lines through it.) In  
particular, any point on a tangent a is conjugate to the point of contact 
A, which is a self-conjugate point, and any line through A (on o ) is 
conjugate to the tangent a, which is a self-conjugate line. 

The dual of any given theorem or construction can be obtained very 
simply by making certain verbal changes in accordance with the following 
"dictionary". (When a word in either column occurs, i t  must be replaced 
by the corresponding element in the other column.) 

Figure 6.1D 

point 
lie on 
line joining two points 
concurrent 
quadrangle 
pole 
locus 
tangent 

The pole of any line AB (not through 0 ) lies on the polars of both 
A and B, and thus may be described as the point of intersection a-b. 
For instance, if A and B lie on w, as in Figure 6.1D, the pole of the 
secant AB is the point of intersection of the tangents a and b. Dually, 
any point outside the circle w lies on two tangents, say a and b, and 
its polar can be constructed as the secant joining the points of contact 
A and B. 

Any line p contains some points outside w. If p is not a diameter, its 
pole P lies on the polars of all these exterior points and can be con- 

line 
pass through 
intersection of two lines 
collinear 
quadrilateral 
polar 
envelope 
point of contact 
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structed as the intersection of the polars of two of them. Dually, any 
point P lies on some secants. If it does not coincide with 0, its polar p 
contains the poles of all these secants and can be constructed as the line 
joining the poles of two of them. We can sum up these results as follows: 

THEOREM 6.12. The pole oj  any secant AB (except a diameter) is the 
common point oj  the tangents at A and B. The polar o j  any exterior point 
i s  the line joining the points oj  contact oj  the two tangents jrom this point. 
The pole o j  any line p (except a diameter) i s  the common point oj  the polars 
o j  two exterior points on p. The polar o j  any point P (except the center) i s  
the line joining the poles oj two secants through P. 

I t  is worthwhile to notice that, when the reciprocating circle w and all 
its tangents are given, these constructions involve only incidences of 
points and lines without any measurement. This feature is characteristic 
of projective geometry. 

EXERCISES 

1. With respect to a circle w having center 0 ,  the polar of any point A 
(except 0 )  can be constructed as the radical axis of two circles: o 
and the circle on OA as diameter. 

2. One of the angles between the polars of A and B is equal to L AOB. 

3. The vertices and sides (regarded as lines) of a regular n-gon with center 
0 reciprocate into the sides and vertices of another such n-gon. 

4. A rectangle with center 0 reciprocates into a rhombus. 

6.2 The  polar circle of a triangle 

Whenever the four points A, B, A', B' of Figure 6.1B are all dis- 
tinct, the triangle ABC (where C = a.b ) has the property that each 
vertex is the pole of the opposite side, any two vertices are conjugate 
points, and any two sides are conjugate lines. I n  fact, any two conjugate 
(but not self-conjugate) points are two vertices of such a self-polar 
triangle A BC. 

Since the three parts of Figure 6.2A (reproducing the first three parts 
of Figure 6.1B) are typical of every possible choice of the conjugate 
points A and B, every self-polar triangle i s  obtuse-angled, the vertex 
where the obtuse angle occurs is inside o, and the remaining two vertices 
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are outside. Conversely, any obtuse-angled triangle ABC has a unique 
polar circle with respect to which the triangle is self-polar. I ts  center 0 
and radius k can be constructed as follows. Since the lines OA and OB 
are two altitudes of AABC, 0 is the orthocenter. I n  the notation of 
(2.44) (page 37), the polar circle has center H and radius 

4 H A  X HD = 4 H B  X H E  = d H C  X HF. 

Therefore, inversion in this circle transforms the vertices of AABC into 
the feet of the altitudes. Considering the circles that pass through these 
triads of points, and remembering that circles invert into circles, we 
deduce 

THEOREM 6.21. For any obtuse-angled triangle, the circumcircle and the 
nine-point circle are interchanged by inversion in the polar circle. 

In other words, the polar circle is one of the two mid-circles of the 
circumcircle and the nine-point circle. (These intersect, because the 
triangle is obtuse-angled.) I t  follows that the circumcircle, nine-point 
circle and polar circle (whose centers all lie on the Euler line) are coaxd, 
and that (for any obtuse-angled triangle) the nine-point circle passes 
through not only nine but eleven notable points, the last two being the 
points of intersection of the circumcircle and the polar circle. 

c 
Figure 6.2A 

EXERCISE 

1. In an obtuse-angled triangle, the polar circle cuts the circumcircle at an 
angle 9 such that 

cos2 9 = -cos A cos B cos C. 
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Figure 6.3A 

6.3 Conics 

The interesting curves called conics (or "conic sections"), which were 
mentioned briefly in Sections 3.8 and 3.9, may be approached in many 
different ways. One way is to define a conic as the reciprocal of a circle. 
More precisely, let us consider the reciprocal of a circle a, having radius 
r and center A ,  with respect to a circle w having center 0. The radius 

Figure 6.3B 
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k of o is unimportant, as it affects only the size and not the shape of the 
conic. The shape is determined by the ratio 

t = OA/r, 

which is very naturally called the eccentricity of the conic. The point 0 is 
called a focus. 

Figure 6.3C 

In describing a conic as the reciprocal of a, we mean that it is both 
the locus of poles of the tangents to a and also the envelope of polars of 
the points on a. If c < 1, so that 0 is inside a, there is a point of 
the conic on every ray from 0 and the conic is an oval curve called an 
ellipse (Figure 6.3A). In particular, an ellipse with e = 0 is merely a 
circle. As the eccentricity c increases, the conic becomes more and more 
obviously different from a circle. If e = 1, so that OA = r and 0 is 
on a, the set of points on a includes one, namely 0, which has no polar 
(with respect to o ), and the set of tangents to a includes one, namely 
the tangent at 0, which has no pole; consequently the conic, which is 
now called a parabola (Figure 6.3B) extends to infinity in the direction 
A 0. A conic is called a hyperbola (Figure 6.3C) if c > 1, so that 0 is 
outside a. The two tangents to a that pass through 0 have no poles; 
but their points of contact, U and V, have polars which are called 
the aymptoies of the hyperbola. These two lines u and v belong to the 
envelope and are thus tangents that have no points of contact! When we 
go along one of them in either direction, we see the curve getting closer 
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and closer without ever actually reaching the asymptote. 
Sir Isaac Newton (1642-1727) explained Kepler's observation that the 

orbit of a planet is an ellipse having a focus in the sun. Since his time, the 
eccentricities c for the orbits of various planets and comets have been 
measured. Some of these values of e are given in the following table. 

Planets 

Mercury 0.2056 

Venus 0.0068 

Earth 0.0167 

Mars 0.0934 

Jupiter 0.0484 

Saturn 0.0557 

Uranus 0.0472 

Neptune 0.0086 

Pluto 0.2481 

Comets 

Encke 

Biela 

Holmes 

Brooks 

Halley 

Donati 

Coggia 

Daniel 

Morehouse 

EXERCISES 

1. Draw two circles a and 8, with nearly equal radii and nearly coincident 
centers, so that a lies inside 8. Choose points A1, As, A5, * * *  on a, 
and Bo, &, B4, on 8, so that the lines BoB2, B2B4, touch a 
a t  A,, As, * * *  . Let b2, br, *-• denote the lines AIA~, AsAs, * * *  , 
and let Cl, Cs, * * *  be the points of intersection of the tangents to 8 
a t  Bo and B2, Bz and B4, * * *  . Then the lines A, b4, * * -  are tan- 
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gents to the reciprocal of /3 with respect to a ,  and the points Cl, C3, * * *  
lie on the reciprocal of a with respect to /3. 

2. The reciprocal of a circle a with respect to a non-concentric circle o 
is symmetrical by reflection in the line of centers. Is it conceivable that 
the conic might have a second line of symmetry? 

3. For a parabola, the feet of the perpendiculars from the focus to the 
tangents all lie on one line. 

4. The angle 9 at which either asymptote of a hyperbola cuts the line OA 
is given by sec 9 = e. Deduce the eccentricity of the rectangular hyper- 
bola, whose asymptotes are at  right angles. 

5. What happens to a comet for whose orbit e 1 l? 

6.4 Focus and diectrix 

When a conic is regarded as the reciprocal of a circle whose center is A, 
the polar of A (with respect to the reciprocating circle w ) is called the 
directrix (corresponding to the focus 0 ) of the conic. For any point on 
a conic, the distance from a focus to the point is called a focal distance. We 
proceed to establish one of the most famous properties of a conic (proved 
by Pappus of Alexandria in the fourth century A.D., but possibly 
anticipated by Euclid six hundred years earlier) : 

THEOREM 6.41. For any point P on a conic with eccentricity e, focus 
0 and directrix a,  the focal distance O P  is  equal to e times the distance 
from P to a.  

I n  Figures 6.4A, B, C, the point P is the pole (with respect to w ) of 
a line p which touches a a t  T, meets the line OA a t  M, and meets 
the line O P  a t  P' (the inverse of P ). The directrix a and the polar 
of M meet the line OA a t  A' (the inverse of A ) and M' (the in- 
verse of M ) ; also K is the foot of the perpendicular from P to a.  We 
wish to prove that O P  = ePK. To  cover all possible eventualities, we 
shall regard all distances specified on the line OA as directed distances 
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(so that OM - OA = A M ,  even if 0 lies between M and A ). In 
terms of k and r ,  the radii of o and a ,  we have 

P K  OA' - OM' - -  - 
O P  O P  

A T  AM r 1 = - 
A M O A  OA c ' 

as desired. 

Conversely, 

THEOREM 6.42. FOY any point 0 ,  any line a not through 0 ,  and 
any positive constant t ,  the locus of a variable point whose distance from 
0 is  t times its distance from a is a conic. 

This is most easily seen by taking o to be the circle with center 0 
that touches a, so that A is the point of contact. Then a is the circle 
with center A and radius OA/ t .  

Figure 6.4A 



FOCUS AND DIRECTRM 

EXERCISES 

1. Obtain the Cartesian equation for the locus of a variable point P whose 
distance from the origin is c times its distance from the line z = Z/G 
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2. If e # 1, the locus of Exercise 1 meets the x-axis twice. Shift the y-axis 
so as to place the new origin midway between these two meeting points. 
Simplify the equation by using the constants a = 1/(1 - 2) and 
b2 = I la I instead of e and 1. What does the form of the equation 
tell us about the symmetry of the curve? 

6.5 The  projective plane 

We can very nearly say that reciprocation transforms every point 
into a line, and every line into a point. The exceptions are the point 0 ,  
which has no polar, and the lines through 0, which have no poles. In  
the case of inversion, we took care of exceptions by extending the Euclid- 
ean plane into the inversive plane. In the present case, we take care of 
our new exceptions by a different extension: into the projective plane. 
We postulate a single line at infinity I,, which is the polar of 0, and 
its points (the points at infinity) which are the poles of the lines through 
0. The properties of the new line and points are determined by the fact 
that all the points on a line a reciprocate into all the lines through its 
pole A.  If a passes through 0, the polars of its points form a "pencil" 
of parallel lines, namely all the lines perpendicular to a. Hence a point 
a t  infinity, such as the pole of a ,  has to be regarded as the common point 
of a pencil of parallel lines. I t  follows that, in the projective plane, there 
are no exceptions to the statement that 

Any  two distinct lines a and b determine a unique point a -b .  

I n  fact, any theorem concerning incidences of points and lines implies 
a dual theorem concerning lines and points, namely the polars and poles 
of the points and lines of the original theorem. For instance, we may 
take the sides of a hexagon circumscribed about the circle w to be the 
tangents a t  the vertices of a hexagon inscribed in the same circle; thus 
Pascal's theorem (Section 3.8) and Brianchon's theorem (Section 3.9) 
are duals, and either can be deduced from the other by reciprocation 
with respect to w. More generally, Pascal's theorem (or Brianchon's), 
applied to any circle, implies Brianchon's theorem (or Pascal's) for the 
reciprocal conic. 

We can now simplify Theorem 6.12 by deleting the parenthetic ex- 
ceptions. Moreover, when we regard this theorem as applying to an 
arbitrary circle a instead of the reciprocating circle w, we can use o to 
derive from a a reciprocal conic a'. Then our constructions for poles 
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and polars with respect to a reciprocate into constructions for "polars" 
and "poles" with respect to the conic a'. In  this manner, reciprocation 
with respect to a circle is generalized to Polarity with respect to a conic 
[6, p. 753. Theorem 6.12 (with the parenthetic exceptions removed) con- 
sists of four parts which are duals of one another; therefore i t  remains 
true when the reciprocating circle is replaced by a conic. 

Figure 6.5A 

In the notation of Figure 3.8B (page 76), the line LM passes through 
N = b-e,  and similarly through a-d .  This remark enables us to convert 
the last part of Theorem 6.12 (Figure 6.SA) into the following direct 
construction for the polar of a general point P: 

THEOREM 6.51. If P i s  not on the conic, its polar joins the points of 
intersection ABODE and AE-BD, where AD and BE are any two 
secants through P. 
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We have seen that any pole and polar with respect to a circle a recip 
rocate (with respect to another circle w ) into a polar and pole with 
respect to the conic a'. In  particular (see Figures 6.3A, B, C) , the center 
A and 1, are pole and polar with respect to a; therefore a and 0 are 
polar and pole with respect to a': 

THEOREM 6.52. With respect to any conic a p t  a circk, a directrix is 
the polar of the corresponding focus. 

EXERCISES 

1. Write Theorem 3.61 (Desargues's) in its projective form, and dualize it. 

2. Write Theorem 3.51 (Pappus's) in its projective form, and dualize it. 

3. If a self-polar triangle for a circle has I ,  as one of its sides, what can 
be said about the remaining two sides? 

4. A conic is an ellipse, a parabola, or a hyperbola according as I,  is a 
non-secant, a tangent, or a secant. 

5. The asymptotes of a hyperbola are its tangents at the points where it 
meets I,. 

6. For a parabola, the two tangents from any point on the directrix are 
perpendicular. 

7. For any conic through the four vertices of a complete quadrangle, the 
points of intersection of the three pairs of "opposite" sides are the vertices 
of a self-polar triangle. 

6.6 Central conics 

I t  is natural to wonder whether ellipses and hyperbolas are really 
more symmetrical than our constructions would immediately lead us to 
expect: whether the two "ends" of an ellipse are alike, and whether the 
two disconnected "branches" of a hyperbola are alike. The following 
discussion will be seen to yield the desired extra symmetry. 

Revising the notation of Theorem 6.51, we can assert that, if a point 
C is not on the conic, its polar joins the points of intersection PQ* PlQl 
and PQI-PlQ, where PP1 and QQ1 are any two secants through C. 
If the polar of C is the line a t  infinity, as in Figure 6.6A, this means 
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that the inscribed quadrangle PQPlQl is a parallelogram. Since C is 
not on the conic, its polar 1, is not a tangent, and the conic is not a 
parabola. Since the diagonals of a parallelogram bisect each other, this 
point C (which is the pole of 1, ) is the mid-point of each of the seg- 
ments PPI, QQ1. But these may be any two chords through C. Ac- 
cordingly, C is called the center of the conic, ellipses and hyperbolas are 
called central conics, and we have proved 

THEOREM 6.61. A central conic is symmetrical by the half-turn about 
its center. 

By applying the half-turn about C to the focus 0 and directrix a 
(Section 6.4), we obtain a second focus 01 and a second directrix all 
as in Figures 6.6B, C. By applying the same half-turn to the circles o 
and a of Section 6.3, we obtain new circles wl and a1 such that the 
same central conic a' is the reciprocal of a1 with respect to wl. 

Figure 6.6A 
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Figure 6.6B 

Setting aside the trivial case when 0 and A coincide, we see that 
every conic is symmetrical by reflection in the line OA. In the case of a 
central conic, it follows that C lies on this line. We can express the half- 
turn about C as the sum of reflections in two perpendicular lines through 
C, one of which can be taken to be OA. Hence the central conic is also 
symmetrical by reflection in the line through C perpendicular to OA. In 
other words, the central conic has the same type of symmetry as a 
rhombus or a rectangle. 

Figure 6.6C 

Let c denote the polar of C with respect to w, as in Figures 6.6D, E. 
Since C and 1, are pole and polar with respect to a', c and 0 must 
be polar and pole with respect to a. Thus C is the w-pole of c, which 
is the a-polar of 0. In other words, if C' is the point where c meets the 
line OA, C is the w-inverse of C', which is the a-inverse of 0. Since 
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OC X OC' = k2 = OA X O A f  
and 

r2 = A 0  X AC' = OA X C'A 

(in the notation of directed distances), we have 

OC OA - = - -  - O A  - - OAt 
OA' OC' OA - C'A 0.42 - ( O A  x C'A)  

which is negative or positive according as c < 1 or c > 1. Hence, for 
an ellipse the center C and directrix a are on opposite sides of 0 ,  as 
in Figure 6.6B, but for a hyperbola they are on the same side, as in 
Figure 6.6C. In other words, the ellipse encloses its two foci and lies 
entirely between its two directrices, but the two directrices of a hyperbola 
both lie in the "empty" space between the two branches. 

Figure 6 6D 

In mechanics we learn that, when air resistance is neglected, the tra- 
jectory of a thrown ball is an arc of a parabola whose focus can be located 
without much difficulty. Since the thrown ball is, for a few seconds, a 
little artificial satellite, the apparent parabola is more accurately an 
enormously elongated ellipse, whose eccentricity is just a shade less 
than 1. Where is its second focus? At the center of the earth! 

EXERCISES 

1. When a point P varies on an ellipse, the sum OP + 01P of its two 
focal distances is constant. (See Figure 6.6B.) 
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Figure 6.6E 

2. When a point P varies on a hyperbola, the difference I O P  - aP I 
of its two focal distances is constant. (See Figure 6.6C.) 

3. For a central conic, the feet of the perpendiculars from either focus to 
the tangents all lie on a circle. (This is called the audiary  circle of the 
conic [20, pp. 13, 25, 1551.) 

6.7 Stereographic and gnomonic projection 

As we saw in Section 5.3 (page log), the only point of the Euclidean 
plane that has no inverse is the center 0 of the inverting circle w. To 
remove this exception, and make inversion a point-to-point transforma- 
tion of the whole plane, we extended the Euclidean plane by postulating 
a single ideal point, called the point at  infinity, to be the inverse of 0. 
This extended plane is called the inversive plane. 

As we saw in Section 6.1 (page 133), the only point of the Euclidean 
plane that has no polu is the center 0 of the reciprocating circle w. To 
remove this exception, and make reciprocation a point-to-line and line-to- 
point transformation of the whole plane, we extended the Euclidean 
plane by postulating a single ideal line, called the line a t  infinity, to 
be the polar of 0. This extended plane is called the flojective plane. 

There are thus two different, but equally valid ways to extend the 
Euclidean plane. This important observation seems to be far less widely 
known than it should be. The two extensions can be further elucidated 
by working in space and comparing two of the simplest possible ways of 
mapping a sphere on a plane. 

Our first definition for inversion in a circle (Section 5.3) is easily 
generalized to inversion in a sphere. Given a sphere w with center 0 
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and radius k, and a point P different from 0, we define the inverse 
of P to be the point P, on the ray OP, whose distance from 0 
satisfies 

O P X O P '  = k2. 

By embedding the plane of Figure 5.3B (page 109) in a threedimensional 
space, and rotating about the line of centers OA, we see at once that 
spheres (including planes as spheres of intinite radius) invert into spheres. 
In particular (see the middle part of Figure 5.3B), if a is the tangent 
plane at  A to the sphere of inversion w ,  then the inverse a' of a is 
the sphere on the radius OA as diameter. Inverse points on a and a' 
can actually be derived from each other without reference to o. Given 
P on the plane a (see Figure 6.7A), we can construct the corresponding 
point P' as the second intersection of the line OP with the sphere a'. 
Conversely, given P', anywhere on a' except at 0, we can construct 
the corresponding point P as the section of the line OP' by the plane a. 
Our natural desire to avoid the exception forces us to change a into an 
inversive plane by adding a single point at  intinity which will be the 
position for P when P' is at  0. [6, p. 83.1 

Figure 6.7A 

This mapping of the sphere a' onto the plane a is called stereographic 
projection. When we notice that this kind of projection is a particular 
inversion, we can easily see that circles project into circles. In fact, since 
spheres invert into spheres (or planes), and any circle can be regarded 
as the curve of intersection of two spheres, it follows that circles (any- 
where in space, and so, in particular, on a' ) invert into circles. 

Another way of mapping the sphere a' onto its tangent plane a is 
by gnomonic projection (or "central projection"). Now, instead of pro- 
jecting from 0 (antipodal to A ), we project from the center of a' 
(which is the mid-point of OA ). Since any plane through this point 
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meets the sphere a' in a great circle and the plane a in a line, each line 
in a comes from a great circle, and each point in a from a pair of 
antipodal points (such as P'I and P't in Figure 6.7B) of the sphere. 
Conversely, given any great circle except the one whose plane is parallel 
to a, we can construct the corresponding line in a as the section by a 
of the plane that contains the great circle. Our natural desire to avoid 
the exception forces us to change a into a projective plane by adding a 
single line a t  infinity corresponding to the exceptional great circle. The 
points on this ideal line ("points a t  infinity") correspond to the pairs of 
antipodal points on the great circle. The projective statement that every 
two lines have a common point corresponds to the obvious fact that 
every two great circles have a common pair of antipodal points (i.e., 
that every two planes through the center of the sphere meet in a line). 
[13, p. 56.1 

Figure 6.7B 

Since all the points of the projective plane (including points at in- 
finity) arise by gnomonic projection from pairs of antipodal points on 
the sphere, we can usefully regard the projective plane as being derived 
from the sphere by abstra~tly identifying each pair of antipodal points, 
that is, by changing the meaning of the word "point" so as to call such 
a pair one point [6, p. 941. 

From the standpoint of practical map-making, neither stereographic 
projection nor gnomonic projection is ideal, though each has some 
virtues. One advantage of the former is that the angle between two 
directions from a point is preserved, and consequently the shapes of 
small islands are mapped without distortion. One advantage of the 
latter is that the shortest path between two points on the sphere is 
mapped by a straight segment. 



THE PROJECTIVE PLANE 153 

I n  Theorem 5.41 (p. 112) we saw that  cross ratios are preserved by 
inversion. Are they also preserved by reciprocation? Only in the case of 
collinear points [see 7, pp. 118-1191. The precise statement is that  
the cross ratio of four points on a line p i s  equal to the cross ratio of the 
four points at which their polars meet any line that does not pass through 
P, the pole of p.  The whole story is too long to be told here. 

Anyone who has understood these ideas will be ready to appreciate 
a n  axiomatic treatment of projective geometry, such as [7]. There he  
will meet again the theorems of Desargues, Pappus and Pascal, from a n  
entirely different point of view, but  with the advantage of being able 
to recognize them as old friends. 

EXERCISES 

1. Stereographic projection preserves angles. 

2. Stereographic projection transforms each great circle on a' into a circle 
(or line) in a that meets a certain circle a t  two diametrically opposite 
points of the latter. 

3. If PI', P i  is a variable pair of antipodal points on a', and PI, P2 is 
the result of projecting stereographically, what transformation in the 
plane a relates PI to P?? 

4. Derive, by stereographic projection, the six circles of Section 5.8, Exercise 
3, from the circles inscribed in the six faces of a cube. 



Hints and Answers to Exercises 

His answer trickled through my head 
Like water through a sieve! 

C. L. Dodgson 

Section 1.1 

1. Altitude to BC divides side a into two segments: b cos C and c cos B. 
Add (or subtract). 

2. Substitute sin A = a/2R, sin B = b/2R, sin C = c/2R, and 
simplify. 

3. (ABC) = $ab sin C, sin C = c/2R. 

4. c = 2p sin B = pb/R, b = 2q sin C = qc/R. Multiply 
and simplify. 

Section 1.2 

1. Use Ceva with BX = XC, CY = YA, AZ = ZB. 

2. Use Ceva with BX = c cos B, XC = b cos C, etc. 

3. Let BB' meet CC' a t  0, and let OA meet A'B' at Al. Since 
AA'B'C' - AABC, 

A'B' B'C' OB' A1B' - = - = = -  
AB BC OB AB ' 

Therefore A1 coincides with A'. 

4. Since L CXA and L AXB are supplementary, the terms involving 
their cosines cancel out. 

154 
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Section 1.3 

1. The obtuse-angled triangle is inscribed in an arc smaller than a 
semicircle. Two of the altitudes meet their opposite sides extended. 

2. Using Figure 1.3B, draw A'D equal and parallel to BB', so that 
A'CDB' is a parallelogram whose center E is the midpoint of CB'. 
Then the sides of ADA A' are equal and parallel to the three medians 
of AA BC, and 

( ABCI (CAA'I CA 4 - -  - - -  - - = - 
(DAA') (EAA') EA 3 '  

3. Let the equal medians BB' and CC' meet at  G, as in Figure 1.3B. 
Since BG = PBB' = 4CC' = CG, AGBC is isosceles and 
L C'CB = L B'BC. By the side-angle-side criterion, 

bC'CB S AB'BC, whence B = C. 

4. Let BE and CF be the equal altitudes. Since 

b BE = 2(ABC) = cCF, b = c. 

5. In the notation of Figure 1.3D, BL/LC = c/b, etc. 

6. By Stewart's theorem (Ex. 4 of Section 1.2), 

whence 
p = ).\/2b2 + 2c2 - a2. 

7. Use Stewart's theorem with m = kc, n = kb, k = a/(b + c). 

9. Adding the altitude CF to Figures 1.1A and B, we observe that 
ABCJ- AFCA, whence BC/CJ = FC/CA. 

Section 1.4 

1. Their radii are x, y, z, in the notation of Figure 1.4A, and thus 
y + z  = a, z + x  = b, x +  y = c. Addinggives x + y +  z = s, 
etc. 
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2. Use Theorem 1.42 and Ex. 3 of Section 1.1. 

4. The internal and external bisectors of angle A are a t  right angles. 

= $ ( b + c -  a)r. = ( s -  a)ra. 

Alternatively, since AAZ.Y, - AAZY,  ra/r = s / ( s  - a ) .  

r r r  s - a  s - b  s - c  6. - + -+ -  = - +- + - =  1. 
ra rb re s s s 

Section 1.5 

1. Since LBCM = 48" = LCMB and LCBN = 12" = L BNC, 
BM = BC = CN.  Notice that the excenter I ,  lies on the segment 
BM but not on the segment CN.  

2. When applied to Bottema's triangle, Lemma 1.512 is, of course, true 
as i t  stands. But if we try to substitute "external" for "internal" we 
find that the circle BCN meets the line BM a t  a point M' on 
the side of E away from M ;  thus we can no longer assert that 
BM > BM'. 

3. The equation BM = CN implies 

whence 

a (a  + b + c) f ( a  + b + c) (a2 + bc) + 2abcJ (b - c) = 0. 

Section 1.6 

1. Since BCEF is inscribable in a circle, 

L AEF = B and AAEF - AABC. 

Similarly for the other triangles. 

2. Although H still lies on the internal bisector of L EDF, i t  lies on 
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the external bisectors of L FED and L DFE. 

3. See the answer to Exercise 2. 

4 . L H A C = 9 0 ° - C  and L O A C = 9 0 ° - B .  

Section 1.7 

2. Referring to Figure 1.6A, we see that OA't = R2 - ( 3 ~ ) ~ .  In terms 
of n = GA', we have AG = 2n and A A '  = 3n. By Ex. 6 of 
Section 1.3, 

Applying Stewart's theorem (Ex. 4 of Section 1.2) to AOAA', we 
obtain 

3 n ( W  + 2n2) = 2nOArt + nOAt = n(2R2 - :a2 + R2) 

whence 

082 = (30G)2 = 9R2 - Qa2 - 18n2 = 9R2 - (a2 + b2 + c2). 

3. Assume for definiteness that b > c. (Otherwise interchange B 
and C.) By Pythagoras, BA2 - B D  = AA'2 - DAr2, that is, 

and therefore aDA' = 3(b2 - c2). 

4. If the Euler line is parallel to BC, it trisects AD, so that 

OA' = AD/3. 

Now substitute for AD and OA' the following expressions: 

AD = bsinC = 2RsinBsinC, 

OA' = R cos A = R (sin B sin C - cos B cos C). 

Section 1.8 

1. OA' = 3AH = AK, and OA' is parallel to AK. 

2. By the remark at the end of Section 1.6, E F  is perpendicular to OA 
and to the parallel line A'K. Thus the diameter A'K bisects the 
chord E F  and the arc EF. 
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3. AABC is the orthic tnangle of AZddc. 

Let P be the common point, and D, E, F, the points diametrically 
opposite to P on the circles PBC, PCA. PAB. Then PA. PB, PC, 
being the perpendicular bisectors of EF, FD, DE, are perpendic- 
ular also to BC, CA,  AB. Since the sides of AABC are half as long 
as  those of ADEF, the circumradius of the former is half that of 
the latter, that is, half the common diameter of the given circles. 

5. Since DK is a perpendicular to BC, and KA' is a diameter, the 
circle cuts the side BC a t  an angle 

LDKA' = LHKN = LHAO = I B - C I .  

(See Ex. 4 of Section 1.6.) 

Section 1.9 

1 .  Extend C P  to D so as to form an equilateral triangle BDP. Since 
ADCB - APCQ, DB/PQ = DCIPC = 1 + (DPIPC) . 
Dividing by DB = PB = DP, we deduce 1IPQ = ( l / P B ) + ( l / P C ) .  

2. First relax the conditions by allowing ABCD to be a rectangle. 
Suppose, if possible, that PD < CD. Then LCPD > 60°, 
L DPA < 7S0, AD < PD < CD. If,on theother hand, PD > CD, 
all the inequalities are reversed. In  either case ABCD would not be 
a square. Hence, if ABCD is a square, we must have PD = CD. 

Or: Construct ABQC 2 AAPB (see Fig. 1.9C). Then ABPQ is 
equilateral, CQ extended is perpendicular to PB and bisects it, and 
C P  = CB = CD. Similarly, DP = DC. 

3. Choose Q so as to complete parallelograms BCPQ and ADPQ. 
Since 

LBAQ = a = LBPQ, 

the four points A,  B, Q, P are concyclic. Hence 

y+e = L A P B  = LAQB = LDPC = S + F ,  
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so that 

y = 8. 

(This solution was contributed by Daniel Sokolowski.) 

4 Let DF, parallel to BC, meet AB at F. Let CF  meet BD at  G. 
Since hBCG is equilateral, BG = BC. Since ACBE is isosceles, 
B E  = BC. Hence hBGE is isosceles, 

LBGE = 80°, LFGE = 40". 

Since L EFG = 40", AFEG is isosceles and FE = EG. Also, 
D F  = DG. Hence AGDE E AFDE, D E  bisects L FDG, and 
L EDB = 30". 

5. The ends of the equal arcs are four vertices of a regular hexagon 
whose remaining two vertices are the midpoints of two sides of the 
equilateral triangle. Extending these sides by half their lengths, we 
obtain a larger equilateral triangle whose three sides contain alternate 
sides of the hexagon. The whole pattern now becomes clear. 

Section 2.1 

1. -1P. The center. 

2. A concentric circle. 

3. The length of either tangent. 

5. R(R - 2r) = 1P - 2rR = d2 2 0. But K 0. Hence 
R - 2r > 0. 

6. The power is d2 - 1P = - 2rR. 

7. Writing P for A and A for X in Figure 1.2C, we have 

BC(PA2 + BA X AC) = PC1 X BA + PB? X AC, 

that is, 

BC(PAf + CA X AB) + PB? X CA + PC1 X AB = 0. 
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8. Trisect BC at U and V, so that BU = UV = VC. Since GU 
is parallel to AB, and GV to AC, 

9. 89 miles. 

Section 2.2 

1. The radical axis or, if the circles intersect, the radical axis minus the 
common chord. 

2. The four midpoints all lie on the radical axis. 

3. Since APAB - AAQB, L PBA = L ABQ, Q lies on BP,  and 
PB/AB = ABIQB. Since AAQB- AABR, L BAQ = L RAB, 
R lies on AQ, and AQ/AB = ABIAR. Since 

P B X Q B  = AB? = A Q X A R ,  

A and B are equidistant from the center of the circle PQR, and 
this circle is symmetrical by reflection in the perpendicular bisector 
of the segment AB. Therefore P', Q', R' all lie on this circle (and 
are its remaining intersections with the lines BR, A P', A P ) . 

4. Writing the equation in the form ( x  - aj2 + (y - b)2 = a2 + b2 - c, 
we see that it represents a circle if c < a2 + bS. 

5. Draw a circle, whose center is not on the line of centers of the given 
circles, cutting one of these circles a t  A and B, the other a t  C 
and D. From the point of intersection of the lines AB and CD, 
draw the line perpendicular to the line of centers. This is the radical 
axis. 

Section 2.3 

1. Let the tangent at T meet AB at 0. Since AOAT- AOTB and 
OT = OP, 
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Now use the converse of Theorem 1.33. 

2. The tangents to the circles from 0 are all equal. 

Section 2.4 

1. In Figure 2.4B, the points D, E ,  F are the midpoints of HD', HE', 
HF'. Hence the sides of AD'E'F' are parallel to those of the orthic 
triangle DEF. 

2. LMLN = L M L A +  L A L N  = L M B A +  LACN 

= & B +  &C = & ( B  + C ) .  

Similarly L N M L  = &(C + A )  and L LNM = & ( A  + B ) .  

Section 2.5 

1. No. 

2. The point diametrically opposite to B. 

3. The vertices lie on their own Simson lines. 

4. Draw PB, PC, CIAl, AIBI. The cyclici quadrangles AIPBIC and 
AIBCIP yield 

L AlBlP = L AlCP = LBCP = LClBP = LClAlP, 

L PAlBl = L PCB1 = L PBC = L PBAl = L PCIA1, 

and APAIB1 - APCIA1. 

Section 2.6 

1. Use Theorems 2.61 and 2.62 with A B  = BC = AC. 

2. Draw the diagonals AC, BD, and apply Ptolemy to PABC and 
PDAB. Then P A  + PC = PB42 and PB + PD = PA42. 

3. Since LQPR = LQAR = LCAD = L A C B  

and LPRQ = LPAQ = LBAC,  A P Q R - A C B A .  
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By Ptolemy, A P  X RQ + AR X Q P  = AQ X RP. Therefore 

A P X A B + A R X B C  = AQXAC.  

Section 2.7 

1. Let OH be the Euler line of AABC, and PP  a diameter of the 
circumcircle. By Theorem 2.72, the Simson lines of P and P bisect 
HP and HP, say at  M and M', respectively. Since 0, M, M', N 
are the midpoints of PP, HP, H P ,  OH (Theorem 1.82), N is 
also themidpoint of MM'. Since NM = 30P = 3R is the radius 
of the nine-point circle (Theorem 1.81), MM' is a diameter. If the 
S i n  lines meet a t  X, L MXM' = 90" (Theorem 2.71), and X 
lies on the nine-point circle. 

2. In an equilateral triangle the orthocenter and the circumcenter 
coincide. 

Section 2.8 

1. The proof is essentially the same as for the Buttedly theorem itself, 
apart from a few changes of sign. 

2. Let 0 be the center of the circle and Q the common point of AT 
and B P  (extended). Since OP bisects LTOB, which is twice 
L TAB, 

L POB = L QAB. 
Thus PO is parallel to QA. Since 0 is the midpoint of BA, P is 
the midpoint of BQ. Since AAHT -- AABQ, the midpoint of TH 
lies on AP. 

3. Suppose AB < AC (otherwise interchange B and C). Take B' on 
AB, and C' on AC, so that line B'G' touches the incircle a t  Z' 
(diametrically opposite to XI. Then AAB'C' -- AABC, and the in- 
circle of AAB'C' touches B'C' a t  a point X' on AX. The two in- 
circles have "internal" common tangents of length t' = XZ' and 
"external common tangents (which are segments of AB and AC) 
of length t, say. Clearly 

BIXJ = ( t  - t') = Z'C'. 
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Similarly, if AZ' (extended) meets BC a t  2, 

BX = ZC. 

Hence A', the midpoint of BC, is also the midpoint of XZ. But the 
midpoint of XZ' is I. Therefore the midpoint of XA is collineat 
with A' and I. 
(This solution was contributed by Daniel Sokolowski.) 

Section 2.9 

1. The lines UX, VY, WZ bisect the angles of the equilateral triangle 
X YZ. 

3. The circumference of the circle is divided into three equal arcs by 
A, Y', Z', and the arc Y'Z' is divided into three equal parts by Z 
and Y. 

4. In  the notation of Figure 2.9B, 

LBZX - m O + a  and LBXC = 12O0+a. 

Hence 

ZX BX BX a - -  - - 2 R sin 301 - -  - - 
sinB sin (60" + a )  ' sin -y sin (120" + a )  sin (60" - a )  

and 
2R sin 3a sin sin -y - - 4R sin a ( 3 4  sin2 a )  sinB sin 7 

ZX = 
sin (60" + a )  sin (60" - a )  cos 2a - cos 120" 

= 8R sin a sin B sin -y. 

5. Taking the side of AXYZ as unit of measurement, we have 

BC = Y'Z' = 3, BY' = CZ' = a, 
tan L CBX = tan L CBZ' = a / 3 ,  tan L ZBY' = 1 / a ,  

L CBX = LZBY' = 30". 

Section 3.1 

1. In Figure 3.1B, PS = QR = 3BD, so PS + QR = BD. Simi- 
larly, PQ + R S  = A C. 
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2. Apply Ex. 6 of Section 1.3 to triangles ABC, CDA, BDX of Figure 
3.1F. ( I t  may be of interest to note that, in this theorem, "any 
quadrangle" can be taken to include a skew quadrangle, whose pairs 
of adjacent sides lie in four distinct planes.) 

3. Apply Ex. 2 with XY = 0. 

4. Use Ptolemy's theorem, 2.61. 

Section 3.2 

1. Observe that tangents to a circle from an external point are equal, 
and use Theorem 3.22 with s = a + c = b + d. 

2. (i) 84. (ii) 4 0 .  

4. By Ex. 5 of Section 1.4 and Ex. 3 of Section 1.1, 

1 1 
r. + rb + re - r = (ABC) 

- - (ABC)abc abc = - -  - 4R, 
S ( S - a ) ( s - b ) ( s - c )  (ABC) 

and 

(IaIbIc) = (IaCB) + (IbAC) + (IcBA) + (ABC) 

= 3 (ar. + brb + +re) + sr 

= +s(ra + rb + re - I) - +(s - a)ra - +(s - b)rb 

-3 (s - c)r, + qsr 

= 3s.4R - q(ABC) + q(ABC) 

= 2sR. 

abn cdn (ab + cd)n lmn 5 . K  = -+- = = - 
4R 4R 4R 4R ' 
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7. Apply Ex. 3 of Section 1.1 to the two triangles in Figure 3.2B and 
add results. Obtain a second expression for K by using the other 
diagonal I instead of n. Multiply the two expressions together 
and use Ptoleiny's theorem, 2.61. 

8. Compare the arcs into which the circle is divided by the bisectors 
of the angles at V and W. 

9. Draw perpendiculars to P from pairs of parallel sides of the rec- 
tangle, and use Pythagoras four times. (It follows easily that P 
could just as well lie outside the plane of the rectangle.) 

10. Let ABCD be the quadrangle inscribed in a circle of diameter d, 
and let P be the given point on this circle. By Ex. 9 of Section 1.3, 
the product of the distances of P from AB and CD is 

Section 3.3 

1. Draw diagonals C P  and CQ in the squares on the first two sides 
BC and CA, and an isosceles right-angled triangle BAR whose 
hypotenuse is the third side AB. Since APCB ,- ACQA ,- ABA R, 
Theorems 3.33 and 3.35 are applicable. 

2. (i) POI, Q02, RO3 are the perpendicular bisectors of the sides of 
AABC. 

(ii) Let AO,, BO2, C03 meeL the sides of AABC at X, Y, Z. 
Then 

BX (A BOI) c sin (B + 30") 
- = - -  A 

XC (CA01) b sin (C + 30") ' 

and there are similar expressions for CY/YA and AZ/ZB, 
enabling us to apply the converse of Ceva's theorem. 

(iii) Since APCA Z ABCQ, we have PA = BQ, and similarly 
BQ = CR. Also, L P F C  = L PBC = 60°, similarly 

LCFQ = 60", LQFA = 60" 
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and, by addition, L PFA = 180"; that is, F lies on A P .  I t  
can be shown similarly that F lies on BQ, on CR, and these 
three lines form six angles of 60" at F [6, p. 221. 

3. Use the converse of Ceva's theorem, as in Ex. 2 (ii). 

4. Imagine Figures 3.3B and 3.3C merged. Since the six triangles BOlNl, 
CN101, C02N2, AN202, AO$Vs, BN808 are equilateral while the 
six triangles AN802, A W 2 ,  OaBN1, NaBOI, N201C, 02NlC are 
directly similar to AABC and congruent to one another, we have 

Since 
L OIBOa = L OlBNl + LLV~BO~ = 60" + B 

and 
LBO$V2 = LBOSA - LN208A = 120" - B, 

the quadrangle BOlN208 (whose opposite sides are equal) is a paral- 
lelogram. Letting X denote the midpoint of 0 2 0 8 ,  and B' the mid- 
point of CA (which is also the midpoint of O2N2 ), we deduce that 
the line XB' is parallel to O$V2 and BOl. Since BOl = 2XB', the 
lines OIX and BB' meet at a point G such that OlG = 2GX and 
BG = 2GB'. But OIX and BB' are medians of A010208 and 
AABC. Hence these two triangles have G as their common centroid. 
Replacing the parallelogram BOlN208 by BNlaN8, we find simi- 
larly that G is also the centroid of ANlNzNa. 

Section 3.4 

1. Let AX, BY, CZ be the external bisectors. Then 

B X C Y A Z  c a b  
--.- = - - -  = 1. 
CXAY BZ b c a  

2. Let AX', BY' be the internal bisectors, and CZ the external bi- 
sector. Then 

BX' CY' AZ --- - 
CX' AY' BZ 
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section 3.5 

1. If the two lines AC and BD are parallel, the parallelograms ABDE 
and CDFA yield BD = A E  and D F  = CA, whence, by addi- 
tion, B F  = CE. Thus EFBC is a parallelogram, and EF is 
parallel to BC. If, on the other hand, AC and BD are not parallel, 
let them meet at 0. Since 

OA/OB = OE/OD and OC/OD = OA/OF, 

we have 
OB X OE = OA X OD = OC X OF, 

whence OE/OF = OC/OB. 

2. Let C and F be the p i n t s  of concurrence, as in Figure 3.5A or 3.5B, 
and let L be the p i n t  where AB meets DE. By Pappus, L lies 
on MN; that is, AB, DE, NM are concurrent. 

3. By Pappus, the line MN passes through the center L of the parallelo- 
gram and thus divides opposite sides into segments that are equal in 
pairs. 

4. 9 p in ts ;  9 l i e s ;  3 lines per p i n t ;  3 p i n t s  per line. 

Section 3.6 

1. If two triangles, PQR and P'Q'R', are perspective from 0, while 
QR is parallel to Q'R' and R P  to R'P', we have 

O Q / w  = OR/OR1 = OPIOP'. 

Therefore PQ is parallel to PQ'. 

2. 10 points; 10 lines; 3 lines per p i n t ;  3 p i n t s  per line. 

3. (i) OQR and PFE. (ii) W R '  and PFE. (iii) ERR' and 
FQQ'. 

4. The vertices of each pentagon lie on the sides of the other. Yes, 
there are altogether six such pairs of mutually inscribed pentagons. 
One of the remaining five is the pair RPP'Q'D, EFQOR'. 

5. Let P be a vertex of a triangle PQR with Q and R on the two 
given lines e and f. Take D on QR extended, E on R P  ex- 
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tended, and let D E  meet Q P  (extended) a t  F. For any Q' on e, 
let DQ' meet j a t  R', and let ER' meet FQ' a t  P'. Then PP  
is the desired line through P. If we applied the same construction 
to parallel lines e and j ,  we would obtain the line through P parallel 
to both. (For otherwise Theorem 3.62 would be contradicted.) 

Section 3.7 

1. Extend the lines AB, CD, EF so as to form a triangle UVW 
with A and B on UV, C and D on VW, E and F on WU. 
Since UE = AD = FW, we have UF = EW = BC. Thus 
BCFU is a parallelogram, and CF is parallel to AB. To deal with 
the centroids, let X and Y be points where BE  meets CF and 
AD, respectively. Then CDEX and BCDY are parallelograms, 
and their centers, A' and F', being the midpoints of the diagonals 
DX and DB, lie on a line parallel to BX and AF. Since 

the lines AA' and FF' meet a t  a point G such that AG = 2GA' 
and FG = 2GF'. But AA' and FF' aremedians of AACE and 
ABDF. Hence these two triangles have G as their common centroid. 

2. Six. 

Section 3.8 

1. Let vertices A, B, C, D, E of hexagon ABCDEF lie on a circle 
that meets A F  again a t  F'. The three points L = AB-DE, 
M = CD-FA, N = BC-EF  are given to be collinear, as in 
Figure 3.8A. Applying Pascal to the hexagon ABCDEF', we see that 
EF', like EF, passes through the point N = BC* LM. Hence F' 
coincides with F. 

2. Figure 3.8B shows how Pascal's theorem applies to a degenerate hex- 
agon ABBDEE. The desired result comes similarly from AABCCE 
or ABCCEA. 

Section 3.9 

1. Use the degenerate hexagon BQCEPF. 

2. AC, BE, QF. 
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3. Use the degenerate hexagon AZBXCY. 

Section 4.1 

1. Regarding the segment a in two ways as a vector, translate AABC 
to AA'B'C' on the right and to AAttBttC" on the left. Join the 
points AB* A"C1' and AC* A'B'. 

2. A tessellation of equilateral triangles, six surrounding each vertex. 

Section 4.2 

1. Use quarter-turns about the centers of the squares. 

2. (i) Since CX/b = a/(a + b) , 

Similarly, BY/YC = a/b. Also 

AH (CAH) b) - = -  3C - 
HB (CHB) as '  

Since now 

B Y C X A H  a a b )  - -  = --- 
YC XA HB b b as = 1, 

the result follows by Ceva. 

(ii) AABC is one half of a parallelogram ABFC whose center M 
is the midpoint of BC. Applying Exercise 1 to this parallelo- 
gram, we see that MO; = MOs and these lines are perpen- 
dicular. Also MO1 = MC and these lines are perpendicular. 
Hence a quarter-turn about M takes LUOIO; to LUCOs. 

(iii) Complete the rectangle KCGCt and the parallelograms DA JA', 
IBEB'. Positive and negative quarter-turns about 01, 0 2 ,  0)  
show that the six triangles B'IB, C'CG, CC'K, JA'A, DAAt, 
BEB' are directly congruent to AABC. Hence the points 
U, V, W are the centers of the rectangle and parallelograms. 

3. Consider the effect of a rotation through 60' about one vertex of 
the desired equilateral triangle. 
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Section 4.3 

1. Join A to the remaining intersection of either circle with the image 
of the other by the half-turn about A. 

2. Let 0 and r be the center and radius of the given cirde. With centers 
A and 0, radii r and 2r, draw two circles meeting a t  01 and 0:. 
The desired line joins A to the midpoint P of 00I or 00:. 

3. Consider the half-turn about the midpoint of one diagonal. 

Section 4.4 

1. At the foot of the altitude to side AB. 

2. Let AB be the base. The third vertex C must lie on a line parallel 
to AB, and we have to minimize AC + CB. 

3. The mirror joins A to the midpoint of the line of centers. 

Section 4.6 

2. First fill the 11 oz. and 5 oz. vessels. Give one robber the vase with 
8 oz. Then use the other vessels to divide the rest in accordance 
with the problem [16; 13, 11, 51, which can be solved in four steps. 

3. Adapting the notation of Figure 1.9B, we find similar quadrangles 
A ClPB1- A B i P C i .  

Section 4.7 

1 A circle whose radius is half that of the given circle. 

2. Construct a square CBED externally on the side BC. The lines A D  
and A E meet BC at  two vertices of the desired square. 
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Section 4.8 

1. Let AAB'C' be any new position of the variable triangle. Since 

AACC' - AABB', L ACC' = LABB' = LABC. 

2. From the sets of congruent segments displayed in the answer to Ex. 4 
of Section 3.3 (p. 166), we see that the rotation through 120' about 
C, which takes 01 to 0 2 ,  0 2  to 0 8 ,  and 01 to 0 1 ,  takes Na to N;, 
N; to Nl, and Nl to Na. Of course, there is a similarity that trans- 
forms 0 1 ,  0 2 ,  Oa into Nl, Np, Na, respectively. However, t h  
similarity is not direct, but opposite: the sum of a dilatation and a 
reflection [6, pp. 74-75]. 

Section 4.9 

Section 5.1 

1. A C / /  BD, AC // DB, C A  // BD, C A  // DB, 

BD // AC, DB // AC, BD // CA,  DB // CA. 

Section 5.2 

1. ( B A ,  DC) = 
B D X A C  - A C X B D  - 
BC X AD AD X BC 

= ( A B , C D ) ;  

similarly for the others. 

2. (i) 1 (ii) 2; (iii) 3; (iv) 1. 
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Section 5.3 

1. A flower-shaped figure consisting of four congruent semicircles (erected 
externally on the sides of a smaller square). 

2. The incenter and excenters. 

3. (i) Let the circle with center P and radius PO meet o a t  points 
A and B. Circles through 0 with centers A and B meet again 
a t  the inverse of P. 

(ii) Using circles we can construct, for any point PI,  a point P2 
such that OP2 = 20P1, and similarly a point Pn such that 
OPn = nOP1. If OPl > k/2n, OPn > k/2, and we can 
construct the inverse Pn' of Pn as in (i). Then the inverse 
P i  of PI is given by OPll = nOPnl. 

4. (i) Similar to AABC itself. 

(ii) Similar to the orthic triangle DEF (by 2.44 on page 37). 

(iii) Similar to the triangle of excenters I,IbI, (by Ex. 4 of Section 
1.4, and Theorem 1.61). 

6. Construct an isosceles triangle BOlC with equal angles A + D - 90' 
a t  B and C,  and an isosceles triangle C02A with equal angles 
B + E - 90' a t  C and A. Circles through C with centers 01 
and 0 2  meet again a t  the desired center 0 .  The radius k is given by 

Section 5.4 

1. Let 0 be the center of o. Then 

AOA P -- AOPA' and PA/PA1  = OAIOP, 

which is constant. 

2. Let BC be the diameter. Then APOB -- ACOP' and 

PO/OB = CO/OP1, OP X OP' = k'. 
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3. Let P and Q be the points inside the given circle a. Inversion in 
any circle with center P yields points P,, Q' and a circle a'. Since 
P, is outside a', so is Q'. The two tangents from Q' to a', being 
two "circles" through P, and Q', are the inverses of two circles 
through P and Q tangent to a. 

4. Use a circle of inversion with its center a t  one of the three points of 
contact. The figure inverts into two parallel lines and a circle tangent 
to both. 

5. Inversion in any circle with center A yields three points B', C', D' 
such that C' lies on the line segment B'D' if and only if AC // BD. 
By Theorem 5.41, the "triangle inequality" B'C' + C'D' > B'D' 
is equivalent to 

that is, AD X BC + A B X CD > AC X BD. 

6. If o and a intersect or touch, this is obvious. Otherwise, let o and a 
have the equations X3 + yl = k2 and a? + yl = ax. By Ex. 5 of 
Section 5.3, the inverse of a in o has the equation 

(-&y + (*-$y = a L*), + yl 

that is, k2 = ax. 

7. Intersecting. The second point of intersection is P,. 

Section 5.5 

1. I t  passes through the points of intersection of o with the circle on 
OA as diameter. 

2. I t  is the circle PP'Q, where P' is the inverse of P. 

3. I t  is the circle PPlP*, where PI and P2 are the inverses of P. 

4. Their product is k4. 

5. Inversion in any circle with center' 0 yields a circle a' and a point 
P' on a'. There is a unique line touching a' a t  P'. Alternatively, 
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inversion in any circle with center P yields a line a and a point 0' 
not on a. There is a unique line through 0' parallel to a. 

Section 5.6 

1. Since AAB~CI is congruent to AABC by reflection in the line A S, 

L BSCl = L SBA - L SClB = B - C. 

2. By Ex. 3 of Section 1.7, A'D = (b) - c2)/2a. We have just seen 
that A'S = a(b - c) /2 (b + c) . Hence, 

(l' ; A'S X A'D = - 

Section 5.7 

2. Let r be the radius of the mid-circle of the two tangent circles of 
radii a and b. Inversion in a circle whose center is the point of 
contact yields a line a t  distance k2/2r, midway between two parallel 
lines a t  distances k2/2a and k2/2b. Hence 

3. We obtain two orthogonal pencils of parallel lines, such as the lines 
whose equations are x = constant and y = constant. 

4. Take 0 on a mid-circle. The mid-circle is then inverted into a straight 
line, and the inversion in it reduces to reflection. 

5. Reflection in a line is a special case of inversion in a circle. 

6. (i) If AC // BD, let y be the circle on which the four given points 
lie. Let a and /3 be two circles orthogonal to y, one through 
A and C, the other through B and D. The circles a and /3 
intersect, say, a t  L and 0. Any circle with center L will 
invert a and /3 into two diameters of the circle y', making 
A'B'C'IY a rectangle with center 0'. 

(ii) If AB // 7 D  or AD//  BC, define y, a and /3 as before. 
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But now the circles a and /3 are non-intersecting. Let L and 0 
be the limiting points of the coaxal pencil a@; in other words, 
let L and 0 be the points where y meets the line joining the 
centers of a and /3. Any circle with center L will invert 
a and /3 into two circles having the same center 0'. Since 
A'C' and B'D' (on one line) are diameters of these concentric 
circles, A'B'C'D' is a degenerate parallelogram. 

(iii) If A, B, C, D are non-concyclic, they determine four distinct 
circles ABC, ACD, ABD, BCD. Let p be one of the two 
mid-circles of ABC and ACD, namely the one that separates 
B and D (so that one of these points is inside and the other 
outside or, if p happens to be straight, B and D are on opposite 
sides of it). Similarly, let v be the mid-circle of ABD and BCD, 
separating A and C. The circles p and v intersect, say at  
L and 0. Any circle o with center L will invert ABC and 
ACD into two congruent circles A'B'C' and A'C'D' whose 
radical axis p' separates B' and D', so that 

L A'B'C' = L C'D'A'. 

Similarly, o inverts ABD and BCD into two congruent circles 
A'B'D' and B'C'IY, whose radical axis v' separates A' and C', 
so that L D'A'B' = L B'C'D'. Hence A'B'C'D' is a parallelo- 
gram. [17, p. 99.1 

In each case, the point pair LO is called the Jacobian of the 
two point pairs AC and BD; see Coxeter, Abh. Math. Sem. 
Univ. Hamburg, 29 (1966) p. 233. 

7. Let the diameters of the given circles on their line of centers be AB 
and CD, so named that AC // BD. Let a and /3 denote the circles 
whose diameters are AD and BC. Let L and M be the limiting 
points of the coaxal pencil a@. The desired mid-circle has diameter 
LM. (For, this circle, being orthogonal to a and /3, inverts A into 
D, and B into C. ) 

Section 5.8 

1. Use Ex. 4 of Section 5.7. 

2. Substitute B = r / 2  + r / n  in the trigonometric identity 

csc B - cot B = tan 38. 

3. From the standpoint of inversive geometry, this arrangement of circles 
is simply the figure for Steiner's porism with n = 4. Therefore three 
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of the inversive distances are 2 log (a + 1) and the remaining 
twelve are zero. 

Section 5.9 

1. The smaller inversive distance 6 is given by 

cosh 6 = 
2 

The hyperbolic cosine of the larger inversive distance is 

= 4\/3 + 7 = 2 cosh2 6 - 1 = cosh 26. 
2 

No, the circle between cannot be the mid-circle of the others, because 
i t  is not coaxal with them. 

2. Soddy's circles come from Steiner's porism with n = 3; hence 

6 T 
C O S ~  - = sec - = 2. 

2 3 

3. The square of the ratio of lengths is 

4. The first part is obvious from a diagram. For the second part, use 
Theorem 5.91 with a = b and c = 2p: 

(2p)2 - bZ - b2 2 

cosh 26 = = 2 ( 3  - 1 .  
2b2 

6 r 2 + R 2 - ( R 2 - 2 r R )  r 
5. 2 sinh2 - + 1 = cosh 6 = = - + I .  

2 2r R 2R 

6. We see from Figure 1.3C (page 8) that 

AH = b cos A csc B = 2R cos A.  

Using also Ex. 4 of Section 1.6 (page 18), we deduce that 

OH2 = R2 + (2R cos A)2 - 4R2 cos A cos (B - C) 

= R2(1 - 8 cos A cos B cos C). 
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Since ON = $OH, it follows that 

cosd or coshd = (I?+ (+R)2 -  I?(+- 2cos AcosBcosC))/I? 

= 1 + 2 cos A cos B cos C. 

7. Using Ex. 4 and taking the line to be the radical axis x = 0, we 
have cosh a = a /4-  and cosh /3 = b / d m .  

Section 6.1 

1. Since o inverts the circle on OA as diameter into the polar a, 
the two circles and the line belong to one coaxal pencil; that is, a is 
the radical axis of the circles. 

2. The polars of A and B are perpendicular to OA and OB, re- 
spectively. 

3. Since the reciprocal of any figure for a circle with center 0 is similar 
to the reciprocal of the same figure for any other circle with the same 
center 0, we may choose o to be the incircle of the given regular 
polygon ABC *. Then the poles of the sides AB, BC, are 
the mid-points of the segments AB, BC, , and the polars of the 
vertices A, B, C, are the lines joining adjacent pairs of these 
midpoints. Similarly, if we choose o to be the circumcircle, the 
reciprocal is the polygon obtained by drawing tangents to this circle 
a t  each vertex. 

4. The poles of two opposite sides of the rectangle are equidistant from 
0 on one line. This holds also for the other two sides, on the per- 
pendicular line through 0, with (in general) a different distance. We 
thus obtain a quadrangle whose diagonals bisect each other a t  right 
angles, that is, a rhombus. Alternatively, the two axes of symmetry 
of the rectangle intercept congruent segments of the tangents a t  its 
vertices. 

Section 6.2 

1. By Theorem 6.21, the polar circle bisects one of the two supplementary 
angles between the circumcircle and the nine-point circle, namely the 
one that tends to zero when the obtuse angle tends to 180". Hence, 
in the notation of Section 5.9, Ex. 6, B = +(180° - 6). 
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Section 6.3 

1. With respect to a, the polar of Bp is h, and so on. With respect to 
8, the pole of the line BOBZ is Cl, and so on. 

2. Each of the figures in this section is symmetrical about the line OA: 
everything that happens above this line could have been duplicated 
below. The appearance of Figures 6.3A and C suggests the possibility 
of another "mirror", perpendicular to OA, for the ellipse and hyper- 
bola. (This will be established in Section 6.6.) 

3. We see, from Figure 6.3B1 that each tangent t of the parabola is the 
polar of a point T on the circle a. The foot of the perpendicular 
from 0 to t is the inverse of T in o. Its locus, being the inverse 
of a (through 0 ) , is a straight line. 

4. We see, from Figure 6.3C1 that the asymptote u, being the polar ot 
U, is perpendicular to the side OU of the right triangle OAU. 
Hence this triangle has angle B a t  A, and 

sec B = - = 
AU 

For the rectangular hyperbola, B = 45' and c = a. 

5. A comet with a parabolic or hyperbolic orbit would never return to 
the neighborhood of the sun. However, there is no conclusive evidence 
that such a comet has ever been seen. Although the portion of an 
orbit that we can observe sometimes resembles a hyperbola because 
of perturbation by planets (especially the massive planet Jupiter), 
and some elliptic orbits are so elongated as to be indistinguishable 
from parabolas, all the known comets (including the "non-periodic" 
ones that pay us one brief visit and are never seen again) are generally 
regarded as members of the solar system. Their speed relative to 
the sun is never great enough to enable them to escape into "outer 
space" where the attraction of some other star might be more in- 
fluential than that of the sun. 

Section 6.4 

1. x' + r" = (I - a)'. 

2. Midway between x = I/(c f I) ,  we find x = -ta. Thus the new 
equation is 
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(Z - a ) 2 +  y' = [ 1 -  c(z - a ) P  = (a - ex)2, 
or 

(1 - 3)22+y' = (1 - 3)a2 = Za = f b t ,  
or 

with the upper or lower sign according as r < 1 or c > 1. Since 
only even powers of z and y occur, the ellipse and hyperbola are 
symmetrical about both the coordinate axes. 

Section 6.5 

1. If two triangles are perspective from a point, they are perspective 
from a line. If two triangles are perspective from a line, they are 
perspective from a point. 

2. If the six vertices of a hexagon lie alternatively on two lines, the 
three pairs of opposite sides meet at collinear points. If the six sides 
of a hexagon pass alternately through two points, the three diagonals 
are concurrent p, pp. 38, 901. 

3. They are perpendicular lines through the center. 

4. Since 1, is the polar of 0, any point at infinity on the conic is the 
pole (with respect to w ) of a tangent to a that passes through 0. 
Hence the number of points at infinity on the conic is 0, 1, or 2 
according as 0 is inside a, on a, or outside a. 

5. In the notation of Figure 6.3C, OU is the tangent to a at  U; there- 
fore one of the points at infinity on the hyperbola is the point of 
contact of the tangent u, and of course the other is the point of 
contact of v. 

6. Since the directrix is the polar of A, any point on it is the pole of a 
diameter of a, and the tangents to the parabola from such a point 
are the polars of the two ends of that diameter. Since these dia- 
metrically opposite points on a subtend a right angle at  0, their 
polars are perpendicular. 

7. Each of the three "diagonal points", in turn, can be identified with 
the P of Theorem 6.51, and then the other two lie on its polar. 
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Section 6.6 

1. O P  + OlP = tPK + sKlP = sK1K. This is s times the distance 
between the two directrices. 

2. When P is on the left branch of the hyperbola, as in Figure 6.6C, 

O P  - OlP = sPK - sPK1 = -sKK1. 

For the right branch the sign has to be reversed. 

3. This circle is the inverse (in u ) of a. (Compare Exercise 3 of 
Section 6.3.) 

Section 6.7 

1. Stereographic projection is a special case of inversion. 

The plane that perpendicularly bisects the diameter OA (Figure 
6.7A) cuts the sphere a' along a special great circle that we naturally 
call the equator. Every other great circle meets this one at  a pair 
of diametrically opposite points. A special feature of the equator is 
that its diameters project into diameters (of the circle in a with 
center A and radius 2k ) . 

3. We can regard Pi and Pt' as the points of intersection of two great 
circles of a', one of which passes through 0 and A. Thus PI and 
Pt, in a, are the points of intersection of a line through A and a 
circle through two diametrically opposite points, say Q1 and Qt, of 
the "projected equator" (with center A and radius 2k ). Since 

AP1 X Apt = AQ1 X AQ2 = -(2k)', 

PI and Pt are related by an anti-inversicm: the sum of the inversion 
in the projected equator and the half-turn about its center A. 

4. Take a' to be the sphere that touches the twelve edges of the cube 
(at their midpoints), and 0 to be one of the points of intersection 
of a' with the line joining two opposite vertices. (By moving 0 to 
one of the points of intersection of a' with the line joining the centers 
of two opposite faces, we would obtain instead the symmetrical figure 
for Steiner's pr ism with n = 4. ) 
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Glossary 

"When I use a word," Humpty Dumpty said, "it means just 
what I choose it to mean-neither more nor less." 

C. L. Dodgson 

( A B C ) .  Area of AABC.  

altitude of a triangle. Line segment from a vertex perpendicular to a side 
(or its extension). 

antipodal points on a sphere. The end-points of a diameter. 

asymptote to a curve. A tangent whose point of contact is at infinity. 

central conic. Ellipse or hyperbola. 

central dilalation. A dilatation that keeps one polnt fixed. 

centroid of a triangle. Point of intersection of medians. 

cevian. A line segment joining a vertex of a triangle to a point on the 
opposite side (or on its extension). 

circumcenler (0)  of a triangle. Center of its circumscribed circle. 

circumcircle of a triaragle. Circle circumscribed about the triangle. 

circumradius ( R )  of a triangle. Radius of its circumscribed circle. 

coaxal circles. Family of circles all pairs of which have the same radical 
axis. Alternatively, circles orthogonal to two given circles. 

collineation. A transformation that takes lines into lines. 

congruence. See isometry. 

c m u .  Reciprocal of circle a (center A ,  radius r ) with respect to 
circle w (center 0 ,  radius k ). 

183 
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cmjugate lines. A line a and any line through the pole of a. 

cmjugate points. A point A and any point on the polar of A. 

cross ralio of 4 points. ( AB, CD] = (AC/BC)/(AD/BD) . 
cyclic quadrangle. A convex quadrangle whose vertices lie on a circle 

(so that opposite angles are supplementary). 

dilatation. A transformation that takes each line into a parallel line. 
A direction-preserving similarity. 

direct similarity. A collineation that preserves angles and their sense. 

directrix of a conic. The polar of A with respect to w (see definition of 
conic). 

eccentricity of a conic. a = OA/r (see definition of conic) 

ellipse. Conic with eccentricity a < 1, so that 0 is inside a (see 
definition of conic). 

envelope. The set of tangents of a curve. 

escribed circle. See excircle. 

Euler line of AABC. The line on which the orthocenter, centroid and 
circumcenter lie. 

excenters (I,, Zb, I,) of a triangle. Centers of escribed circles of the 
triangle. 

excircle, or escribed circle of a triangle. A circle tangent to one side of the 
triangle and to the extensions of the other two sides. 

r a d i i  ( r ,  r ,  r )  of a triangle. Radii of escribed circles of the triangle. 

focus of a conic. The center 0 of the reciprocating circle (see definition 
of conic). 

Gergonne point of AABC. Point of intersection of the cevians through 
the points of tangency of the incircle to the sides of AABC. 
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gnomonic projection. Projection of a sphere from its center onto any 
tangent plane. 

great circle orr a sphere. The section by a plane through the center. 

half-turrz. A rotation by 180'. 

homeomorphic. Continuously transformable both ways. 

hyperbola. Conic with eccentricity a > 1, so that 0 is outside a 
(see definition of conic). 

asymptoles of a hyperbola. Polars of points of contact of tangents 
from 0 to a. 

inzage of a poirrt P by rejlection i n  a line 1. Second intersection of two 
circles through P whose centers lie on 1. 

iizccrzter ( I )  of a triangle. Center of its inscribed circle. 

iluircle of a triangle. Circle inscribed in the triangle. 

irtradius ( r )  of a triangle. Radius of its inscribed circle. 

irzrerse of a point P with respect to a circle w. Second intersection of 
two circles through P orthogonal to w. 

iilrwsire distarzce between two non-intersecting circles a and 8. Natural 
logarithm of the ratio of the radii of two concentric circles into which 
a and /3 can be inverted. 

iizversive plane. Euclidean plane plus a single ideal point (see point at 
infirzity P, ) . 

isomelry. A length-preserving transformation. 

join of two points. The line joining the two points. 

limitirzg poirrts of two non-intersecting circles a and /3. The two common 
points of any two circles orthogonal to a and 8. 

line at irlfinily. Ideal line whose points are centers of pencils of parallels. 
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medial triangle of AABC. Triangle formed by joining the midpoints of 
the sides of AABC. 

median of a triangle. A cevian through the midpoint of a side. 

mid-circle, m circle of antisimilitude. Circle that serves to interchange two 
given circles by inversion. 

n-gon. A polygon with n vertices and n sides. 

Napoleon triangle of AABC. 
inner. Triangle whose vertices are the centers of equilateral triangles 

erected internally on the sides of AABC. 
outer. Triangle whose vertices are the centers of equilateral triangles 

erected externally on the sides of AABC. 

mthu kiangle (CIDEF) of AABC. Triangle whose vertices are the 
feet of the altitudes of AABC. 

mthocenter ( H )  of a triangle. Point of intersection of altitudes. 

mthogonal circles. Two intersecting circles whose tangents at  either point 
of intersection are at right angles. 

parabola. Conic with eccentricity a = 1, so that 0 is on a (see 
definition of conic) . 

Pascal line of a hexagon whose vertices lie on a circle (m on any other conic) . 
Line containing the three points of intersection of pairs of opposite 
sides of the hexagon. 

Peaucellier's cell. A linkage that traces the inverse of a given locus. 

pedal kiangle of a point P with respect to AABC. The triangle formed 
by the feet of the perpendiculars drawn from a point P to the sides 
of AABC (or their extensions). 

pencil of circles 4. Circles orthogonal to two distinct circles orthogonal 
to a and 8. 

pencil of lines. All the lines (in one plane) through a point. 

point at injinity, P,. The ideal common point of all straight lines, re- 
garded as circles in the inversive plane. 
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polar circle. Circle that reciprocates the vertices of an obtuse-angled 
triangle into the respectively opposite sides. 

polar of a point P with respect to a circle. Line joining intersections 
ABODE and AE-BD, where AD and BE are two secants (or 
chords) through P. 

pole of a line p with respect to a circle w,  center 0. Inverse of foot of 
perpendicular from 0 to p. Alternatively, the point of intersection 
of the polars of any two points on p. 

polygon. A closed, broken line in the plane. 

power of a point P with respect to a circk. dl - R, where d is the 
distance from point P to the center of the circle, and R is the radius. 

product ( m  sum, m resultant) of two transfmmations. The result of applying 
the first transformation and then the second. 

projective plane. Euclidean plane plus one ideal line (see line at injinity) . 

quadrangle. A polygon with 4 vertices and 4 sides. 
convex quadrangle. Both diagonals inside. 
re-entrant quadrangle. One diagonal inside, one outside. 
crossed quadrangle. Both diagonals outside. 

quadrilateral. See quadrangle. 

radical axis of two non-cmentru circles. Locus of points of equal power 
with respect to the two circles. 

radical center of three circles with non-collinear centers. Common inter- 
section of all three radical axes, each radical axis taken for two of 
the three circles. 

range of points. All the points on a line. 

reciprocation. Transformation of points into their polars, and lines into 
their poles. 

rflection in a line 1. A transformation which takes every point into its 
mirror image, with 1 as mirror. (See image.) 

regular polygon. A polygon having a center a t  the same distance R 
from every vertex and at the same distance r from every side. 
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rotation. A transformation resulting from turning the entire plane about 
a fixed point in the plane. 

self-polar tria~tgle. A triangle whose vertices are the poles of the respec- 
tively opposite sides. ' 

separation AC // B D  (fm four distinct coplanar points). Every circle 
through A and C meets every circle through B and D. 

similarity. A transformation that preserves ratios of distances. 

Simson line (m simson) of a point P on the circumcircle of AABC.  
Line into which the pedal triangle of P with respect to AABC 
degenerates. 

spiral similarity (m dilative rotation). The product (q.v.) of a rotation 
and a dilatation, or vice versa. 

stereographic pojection. Projection, from 0, of sphere through 0 onto 
tangent plane at antipodes of 0. 

sum. See @roduct. 

topology. Geometry of the group of one-to-one both-ways continuous 
transformations. 

transfmmation of the plane. A mapping of the plane onto itself such that 
every point P is mapped into a unique image P' and every point Q' 
has a unique prototype Q. 

translation. A transformation such that the directed segments joining 
points to their images all have the same length and direction. Alter- 
natively, a dilatation without any fixed point. 

tritangent circles of AABC.  The four circles tangent to all three sides 
(or their extensions) of A A B C ;  the incircle and the three excircles. 

Varignon parallelogram of a quadrangle. Parallelogram formed by seg- 
ments joining midpoints of adjacent sides of the quadrangle. 

Veclor. See kanshtwn. 



Index 

affine collineation, 101 Brunelleschi, F., 70 
altitudes, 9 Butterfly theorem, 45, 162 
ammonium radical NH4, 127 
angle bisectors Cartesian coordinates, 32 

external, 16 Casey, J., 24, 112 
internal, 9 catenary, 129 

angle of incidence, 87 center of a conic, 147 
angle of reflection, 87 center of gravity, 7 
antipodal points, 152, 183 centroid, 7 
antisimilitude Ceva, Giovanni, 4 

circle of, 121, 186 theorem, 4, 53,67 
Archimedes of Syracuse, 6, 59 Cevian, 4 
area, 3 circle, 27, 107 

negative, 52 of antisimilitude, 121, 186 
positive, 52 of Apollonius, 114 

artificial satellite, 149 auxiliary, 150 
Artobolevskii, I.I., 109 coaxal, 35, 120, 137, 183 
asymptotes of a hyperbola, 139, Euler, 22 

141, 146 great, 152, 185 
of inversion, 108 

Ball, W. W. R., 181 nine-point, 20, 21, 117, 131 
Bell, E. T., 1, 31, 46, 59, 181 orthogonal, 115 
Bevan, B., 22 reciprocating, 136 
Bolyai, J., 126 Soddy's, 114, 130, 176 
Bottema, O., 16 circumcenter, 7, 29, 111 
Bottema's triangle, 156 circumcircle, 7, 131, 137 
Brahmagupta, 57 coaxal circles, 35, 120, 137, 183 

formula, 56 ff pencil of, 35 
Braikenridge, W., 76 Cohn-Vossen, S., 182 
Brianchon, C. J., 77 collinearity, 51 

theorem, 77, 79, 144 comet, 140, 178 
189 



190 INDEX 

concurrence, 51 
configuration, 125, 133 

dual, 133 
congruence, 80 
conjugate lines, 135 
conjugate points, 135 
conic, 132, 138, 179, 183 

central, 147 
contrapositive, 15 
Coolidge, J. L., 129 
coprime, 93 
Courant, R., 88, 181 
Court, N. A., 181 
Coxeter, H. S. M., 75, 181 
cross ratio, 107, 112, 153, 184 

deltoid, 44 
Desargues, G., 70 

theorem, 70, 146 
Descartes, R., 31 
diagonal, 52, 73 
dilatation, 80, 94, 184 

central, 94, 101 
directed distances, 141 
directed line segments, 30 
direct similarity, 184 
directrix, 141, 146 
Dodgson, C. L., 51,154, 183 
dual configuration, 133 
duality, 132 
Durell, C. V., 181 

e, 123 
eccentricity c, 139 
ellipse, 139 
enneagon (Pgon), 50 
envelope, 134 
equilateral triangle, 25, 63, 162 
escribed circles, 13 
Euclid of Alexandria, 1, 27, 141 
Euler, L., 19, 29, 130 

circle, 22 
line, 19, 137, 157, 162, 184 

excenters, 13 
excircles, 13 
exradii, 13 

Fagnano, J. F. T., 88 
problem, 88 

Fejes Tdth, L., 181 
Fermat, P., 31,65 

point, 83 
Feuerbach, K., 22 

theorem, 22, 117 
Flaubert, G., 132 
focus, 132, 141 
focal distance, 141 
Forder, H. G., 74,99, 181 
functions 

exponential, 126 
hyperbolic, 126 

Gardner, Martin, 15 
Gauss, C. F., 126 
geometry 

hyperbolic, 126 
inversive, 88, 132 
non-euclidean, 126 
projective, 51, 136 

Gergonne point, 13 
gnomonic projection, 151, 185 
Greitzer, S. L., 75 

half-turn, 21, 80, 85, 95, 147 
Hardy, G. H., 182 
Henderson, A., 16 
Heron of Alexandria, 59 

formula, 58 
hexagon, 73, 179 
Hiibert, D., 182 
Hobson, E. W., 109 
homeomorphism, 101 
homothetic, 5, 72 
Homer, W. G., 46 
Hudson, H. P., 111 
hyperbola, 139 

rectangular, 141 
hyperbolic functions, 126 
hyperbolic geometry, 126 
hypocycloid, 44 

ideal line, 150 
ideal point, 150 



INDEX 

identity, 81 
incenter, 10, 29, 111 
incircle, 10 
inradius, 10 
incidence, 133 
invariant point, 99 
inverse 

of a circle through 0, 109 
of a line, 109 
locus, 108 
o i a  point, 108, 150, 185 
of a triangle, 110 

inversion, 108 ff 
antiinvepion, 180 
circle of, 108 
in a sphere, 150 
inversive definition of, 116 

inversive distance, 123, 185 
inversive geometry, 88, 132 
inversive plane, 112, 113, 150, 151 
isogonal conjugates, 93 
isometry, 81, 185 

Jacobian, 175 
Johnson, R. A., 46, 182 
Jupiter, 178 

Kazarinoff, N. D., 88, 182 
Kempe, A. B., 109 
Kepler, J., 27, 140 
Klein, F., 27, 80 

Lagrange, J., 63 
Lamb, H., 56, 182 
Laplace, P., 63 
Law of Cosines, 58 
Lehmus, C. L., 14 
Leibniz, G. W., 74 
Lipkin, L., 109 
limiting points, 120 
line at infinity, 144 
linkage, 109 
Lobachevsky, N., 126 
Lockwood, E. H., 109, 182 
logarithm (natural), 123, 124 

MacLaurin, C., 76 
Magnus, L. J., 108 
mapping, 80 
medial triangle, 18 
medians, 7 
Menelaus of Alexandria, 66 

theorem, 66 
mid-circle, 121, 137, 174, 186 
Miquel, A., 62 
mirror, 86 
Morley, F., 47, 88 

theorem, 47 

Napoleon Bonaparte, 63 
Napoleon triangles, 61, 63ff, 186 

inner, 63,64, 100 
outer, 63 

Naraniengar, M. T., 47 
Neuberg, J., 23 
Newton, I., 30, 74, 140 
nine-point center, 21 
nine-point circle, 20, 21, 117, 131 
non-euclidean geometry, 126 

O'Beirne, T. H., 89, 182 
Oppenheim, A., 25 
orbit, 140 
Ore, O., 182 
orthic triangle, 9, 16, 88 
orthocenter, 9, 38, 111 
orthocentric quadrangle, 39, 119 
orthogonality, 114 

palindrome, 63 
Pappus of Alexandria, 67, 141, 146 

theorem, 67 
parabola, 139, 146, 179 
parade of angles, 25 
parallelogram, 56 

degenerate, 81 
Pascal, B., 74, 144 

line, 75, 186 
theorem, 74, 168 

Peaucellier, A., 109 
cell, 109 

~ e d a l  point, 22 



192 INDEX 

pedal triangle, 22, 40, 186 
Pedoe, D., 182 
pencil of circles, 35, 186 
pentagon, 50, 52, 79 
Perel'man, A. I,, 89 
Perfect, H., 182 
perspective, 49 

triangles, 70 
perspectivi ty 

from a line, 70 
from a point, 70 

Petard, H., 103 
Petersen, J., 99, 182 
Petersen-Schoute theorem, 100 
Pivot theorem, 62 
planets, 27, 140 

perturbation by, 178 
Poncelet, J. V., 22 
point at  infinity, 113, 144 
polar, 133, 150 
pole, 133 
polar circle of a triangle, 137, 187 
polarity, 145 
polygon, 51 
power of a point, '27, 30 
preservation of angles, 114 
principle of duality, 133 
Procrustean stretch, 101, 102 
projection 

gnomonic, 151 
stereographic, 151, 180, 188 

projective geometry, 51, 136 
projective plane, 132, 144, 150, 152 
Ptolemy's theorem, 42, 106, 165 

quadrangle 
complete, 134 
convex, 52 
crossed, 52 
cyclic, 57 
orthocentric, 39, 119 
re-entrant, 52 

quadrilateral 
complete, 134 

radical axis, 34, 78, 122, 160, 187 

radical center, 35, 38 
ratio of magnification, 94 
reciprocating circle, 136 
reciprocation, 132, 187 
reductio ad absurdum, 16 
reflection, 86 
regular polygon, 187 
Robbins, H., 88, 181 
rotation, 80, 82, % 

Satterly, J., 9 
Schoute, P. H., 99 
Schwarz, H. A., 88 
self-conjugate line, 135 
self-conjugate point, 135 
self-inverse point, 108 
self-polar triangle, 136, 1% 
separation, 103, 188 
Shervatov, V. G., 182 
similar triangles, 34, 62 
similarity, 80, 94, 188 

direct, 95 
Simson, R., 6, 41 

line, 40, 41, 43, 62 
oblique, 62 

Smogorzhevskii, A. S., 77, 182 
Soddy's circles, 114, 130, 176 
Spieker, T., 75 
spiral similarity, 95, 188 
squares, 65, 96 
Steiner, J., 14, 30 

porism, 124, 175, 180 
Steiner-Lehmus theorem, 14 
stereographic projection, 151, 1 

188 
Stewart, M., 6 

theorem, 6, 31, 157 
sum of reflections, 148 
superposed maps, 99 
symmetry, 148 

tessellation, 89, 169 
three jug problem, 89 
three parameter family, 125 
trajectory, 149 



INDEX 

transformation, 808 
continuous, 101 
linear, 101 

translation, 81 
triangle 

equilateral, 25, 63, 162 
of centers, 62 
inequality, 173 
orthic, 9, 16, 88 

trilinear coordinates, 89 
trisectors of the angles, 47 
tritangent circles, 13 
Tutton, A. E. H., 127 
Tweedie, M. C. K., 89 

ultraparallel planes, 126 

van der Waerden, B. L., 59, 182 
Varignon, P., 53 

parallelogram, 53 
theorem, 51ff 

vector, 81 

Wallace, W., 41 

Yaglom, I. M., 34, 64, 182 

2011, E. J., 45 


